Parametrized tests of post-Newtonian theory with GW detectors

Chandra Kant Mishra

ISGWA 2010, Delhi

21 Dec 2010

イロト イロト イヨト イヨト 三日

Tests of General Relativity

Most important tests of General Relativity (GR) are based on:

- Solar System observations.
- Radio observations of binary pulsars.

< ロト < 同ト < ヨト < ヨト : ヨ

Tests of General Relativity

Most important tests of General Relativity (GR) are based on:

- Solar System observations.
- Radio observations of binary pulsars.
- General relativity passes these tests in flying colours.

< ロト < 同ト < ヨト < ヨト : ヨ

Tests of General Relativity

Most important tests of General Relativity (GR) are based on:

- Solar System observations.
- Radio observations of binary pulsars.
- General relativity passes these tests in flying colours.
- But the gravitational fields involved in such tests are still very weak as compared to the strongest possible Gravitational fields in nature, *e.g.* those near the horizon of the black holes in a BH-BH binary system.

(ISGWA2010)

(a)

イロン イヨン イヨン イヨン

What if

* General relativity breaks down when the gravitational fields are stronger than those of binary pulsars.

What if

- * General relativity breaks down when the gravitational fields are stronger than those of binary pulsars.
- * There is a scalar field coupled with the metric? [Scalar-tensor field theories]

What if

- * General relativity breaks down when the gravitational fields are stronger than those of binary pulsars.
- * There is a scalar field coupled with the metric? [Scalar-tensor field theories]
- * Graviton has a mass which is so small that it starts to show up in the very strong field regime. [Massive Graviton Theories]

What if

- * General relativity breaks down when the gravitational fields are stronger than those of binary pulsars.
- * There is a scalar field coupled with the metric? [Scalar-tensor field theories]
- * Graviton has a mass which is so small that it starts to show up in the very strong field regime. [Massive Graviton Theories]
- * Gravity is described by some other theory.

What if

- * General relativity breaks down when the gravitational fields are stronger than those of binary pulsars.
- * There is a scalar field coupled with the metric? [Scalar-tensor field theories]
- * Graviton has a mass which is so small that it starts to show up in the very strong field regime. [Massive Graviton Theories]
- * Gravity is described by some other theory.

Gravitational Waves

• Gravitational Waves have direct imprints of all the strong field effects.

< ロト < 同ト < ヨト < ヨト : ヨ

What if

- * General relativity breaks down when the gravitational fields are stronger than those of binary pulsars.
- * There is a scalar field coupled with the metric? [Scalar-tensor field theories]
- * Graviton has a mass which is so small that it starts to show up in the very strong field regime. [Massive Graviton Theories]
- * Gravity is described by some other theory.

Gravitational Waves

- Gravitational Waves have direct imprints of all the strong field effects.
- How well can GW observations constrain deviations from GR?

< ロト < 同ト < ヨト < ヨト : ヨ

Testing GR with Binary Pulsar J0737-3039

Measurement of various Keplerian and post-Keplerian parameters which are functions of component masses of the binary, led to a consistency check in the plane of masses.

(ISGWA2010

Parametrized test of PN theory

Phasing formula in the restricted waveform approximation

$$\tilde{h}(f) = rac{1}{\sqrt{30} \, \pi^{2/3}} rac{\mathcal{M}^{5/6}}{D_L} f^{-7/6} e^{i\psi(f)},$$

and to 3.5PN order the phase of the Fourier domain waveform is given by

$$\psi(f) = 2\pi ft_c - \phi_c - \frac{\pi}{4} + \sum_{k=0}^{7} (\psi_k + \psi_{kl} \ln f) f^{\frac{k-5}{3}},$$

Log terms in the PN expansion

- In GR the phasing coefficients are functions of the component masses of the binary: $\psi_k(m_1, m_2) \& \psi_{kl}(m_1, m_2)$ [Spins neglected]
- Independent determination of 3 or more of the phasing coefficients ⇒ Tests of PN theory[KGA, Iyer, Qusailah & Sathyaprakash, 2006].

< ロト < 同ト < ヨト < ヨト : ヨ

Basic Idea

- Parametrize the phasing formula in terms of various phasing coefficients where all of them are treated as independent.
- See how well can different parameters be measured.
- Those which are well estimated, plot them ($\psi_k \& \psi_{kl}$) in the $m_1 - m_2$ plane (similar to binary pulsar tests) with the widths of various curves proportional to $1 - \sigma$ error bars.

[KGA, Iyer, Qusailah, Sathyaprakash, 2006a]

Issues

Large parameter space leads to a ill-conditioned Fisher matrix and makes the estimates less reliable.

GW 6 / 14

Alternative Proposal

[KGA, Iyer, Qusailah & Sathyaprakash, 2006b]

- Treat two parameters as basic variables in terms of which one can parametrize all other parameters EXCEPT one which is the *test* parameter.
- This way, dimensionality of the parameter space is considerably reduced.
- Thus, one will have ⁸C₃ tests, not all of them independent.
- The best choice to be used as basic variables are the leading two coefficients at 0PN & 1PN, which are the best determined ones.
- Then one will have 6 tests.

 All parameters except ψ₄ determined quite well over a large range of masses.

[KGA, Iyer, Mishra & Sathyaprakash, 2010]

• Use of 3PN accurate amplitude corrected waveforms (as opposed to restricted waveforms).

[KGA, Iyer, Mishra & Sathyaprakash, 2010]

- Use of 3PN accurate amplitude corrected waveforms (as opposed to restricted waveforms).
- Possibility of testing the PN theory using GW observations of stellar mass BBHs in AdvLIGO and ET and Intermediate mass BBHs in ET has been explored.

[KGA, Iyer, Mishra & Sathyaprakash, 2010]

- Use of 3PN accurate amplitude corrected waveforms (as opposed to restricted waveforms).
- Possibility of testing the PN theory using GW observations of stellar mass BBHs in AdvLIGO and ET and Intermediate mass BBHs in ET has been explored.
- Effect of low frequency sensitivity as well as the effect of using the FWF on the Test have been studied in case of ET.

[KGA, Iyer, Mishra & Sathyaprakash, 2010]

- Use of 3PN accurate amplitude corrected waveforms (as opposed to restricted waveforms).
- Possibility of testing the PN theory using GW observations of stellar mass BBHs in AdvLIGO and ET and Intermediate mass BBHs in ET has been explored.
- Effect of low frequency sensitivity as well as the effect of using the FWF on the Test have been studied in case of ET.
- Consideration of unequal mass systems.

Results

(ISGWA2010)

GW 9 / 14

GW 10 / 14

GW 11 / 14

<u> 《 曰 》 《 問 》 《 문 》 《 문 》</u>

GW 12 / 14

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ 二 国

Model=FWF; q_m=0.1; D₁=300Mpc; ET-B; F_{low}=1Hz

(ISGWA2010

TOC

GW 13 / 14

Model=RWF; q_m=0.1; D_L=3Gpc; ET-B; F_{low}=1Hz;

GW 14 / 14

・ロン ・聞と ・ヨン ・ヨン