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Frequencies of astronomical gravitational sources
Earth based detectors: 10 — 1000 Hz

* The signals for which the best waveforms are available
have narrowly defined frequencies
» |n some cases, existing motion dominates. Pulsar spins.
» |n most cases, one can relate this to the natural frequency of a self

gravitating object.
f[]' =V Gﬁ/'iﬂa

* Fora NS
» F=2Khz

* For astellar mass blackhole
» F=1kHz

* Fora SMBH in the centre of our galaxy
» F =4 mHz.
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Gravitational Dynamics
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LIGO Observatory Facilities

LIGO Hanford Observatory [LHO] LIGO Livingston Observatory [LLO]
2 km + 4 km interferometers in same vacuum envelope Single 4 km interferometer
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The LIGO Interferometers

* Broad-band detector to measure distortion of spatial

geometry due to passing gravitational wave from
astrophysical sou
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Current LIGO Sensitivity.
LIGO is operating at design sensitivity in S5

Strain Sensitivity for the LIGO 4km Interferometers
S5 Performance - June 2006 LIGO-G060293-01-Z
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Binary Coalescence Waveforms
LIGO is sensitive to NS / BH inspirals M < 100 M@

Inner-most Stable

* Assume inspiral signals are em T o

(reasonably) well modeled ‘ é/,/ \@ <((.}))

» standard matched filtering
technique ;O:im;cs _ - Uncertain_ 10 msec Time

* Post-Newtonian templates 10Hz < f < 2000Hz Uncenain - 1000Hz "

accurate for low mass systems in

LIGO band but at higher masses

post-Newtonian approximation

breaks down. o T TR ] T
* Atstill higher masses, inspiral MW W\/\N\NW

searches transition into burst - | ~f e Lo

searches T tme T me T time

* EOB waveforms hold good beyond
ISCO uptor~ 3 My (more

bandwidth for high mass systems)
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Inspiral Merger Ringdown Templates
Numerical Relativity Inspired Waveforms

Time Domain EOBNR Waveforms (30+30 Ms BBH)

* The Effective-One-Body method -
provides complete analytic IMR -
waveforms

* The waveforms are tuned to agree with
NR simulations

Strain

— Tuned to simulations of non-spinning , , , ,
B . N B oz LRI f.l.l."{! AL LIN] 013 LI E]
binaries with mass ratios 1:1 — 4:1. Time (s)

— A pseudo-4PN parameter tunes the late

inspiral-merger evolution. ——
10.0F

- Ringdown frequencies depend on the final
mass and spin of the remnant black hole.

These are fit to agree with simulations Lok

[h(7)]

* Good agreement with a set of

: : - [— R
comparable mass NR simulations and - |— EOB-NR

0.1l [— EOB cutat light ring

test mass limit simulations (phase
difference ~8% of a GW cycle)

"o I (L
S (Hz)
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Matched Filtering with EOBNR templates

* Detector output contains noise and a

possible inspiral signal 2(t) = n(t) + h(t; f)

» Assume signal's functional form is known
accurately : EOBNR waveforms

» Signal's parameter is not known a-priori

* Matched filter

i *
,O(t ,Uz) _4 ~(f)h (f7 :U'l e2mift df

fl Sh(f)
rn’ \mm

* Maximize filter output over all
A = max [p]

parameters b w0 10
= - mszoIar Mass
» This is the detection statistic.

» Threshold with care

my / Solar Mass

H1: Jul 2006 02:33:44
UTC
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EOB templates for high-mass systems

* EOB templates are well suited
for high mass CBC search

» Higher bandwidth for high mass
systems

* Larger band-width is good for
inspiral search

» |nspiral Horizon Distance
increases (improvement in mass
reach)

» Useful for signal based

consistency tests to reject false

alarms
A
d o<

(ma, m2) X/f“ [R(H)?
p . SR
* Optimally oriented binary

» snrfixed at 8

s B2~ £
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Monte-Carlo Injection Studies

* Alarge number of software
injections are injected in data
which are then parsed through
the data-analysis pipeline.

» Helps us tune the optimum value of
the pipeline parameters

» Understand pathologies of the data
and/or detection algorithm (from
the missed injection)

» Quantify the efficiency of the
pipeline as a function of distance to
the compact binary systems.

» Pipeline has many tunable

parameters
Chandigarh IISERM November 2010
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IFQ Data

Template bank placement

Inspiral Stage (Correlations)
No expensive sig. based vetos
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About the Search

* We have fast-tracked the
analysis of the final 6
months of Sg

* Inspiral-Merger-Ringdown
(IMR) templates to model
the entire in-band
gravitational wave signal

* High mass waveforms can be

very short (~100 ms).
Merger

and ringdown are a large
part
of the in band signal.

» Effective-One-Body (EOB)
model tuned to Numerical
Relativity (NR) simulations =

_ EOBNR waveforms
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Tapering the waveforms
cleans up the spurious power at high frequencies

"EOBNR-50-58-28, dat” ——
"EOBNR-50-58-18, dat” ——

1e+014 “EQBNR-50-508-5, dat"” ——
“EDBNR-50-58-1,dat” ——

“EOBHR-58-58-28-tapered.dat"”
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18 108 1688
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Phenomenological IMR Injections

* Agood testto see if our templates
can detect similar, but not
identical waveforms.

* Another family of analytic IMR
waveforms that is tuned to NR
simulations

— Constructed in the frequency
domain

— Tuned to NR simulations with
mass ratios 1:1 — 4:1

—  Notintended to be used for
mass ratios beyond 4:1

* Nevertheless, we injected up to
99:1 to test our pipeline

* Very asymmetric injections were
recovered with poor chi-square

Chandigarh IISERM No\?egmgerng%amemr estimation
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Spinning Kludge Waveform Injections
Ad-hoc ringdown attached at the end ...

50+50 M® Spinning Injections

* (Canour non-spinning templates
detect spinning IMR waveforms? sl i !

&

* We don't know what these | Y
waveforms will look like h “

* Kludge waveforms are
constructed from: 1425 Mo Spmnmg InJectlons

— 3.5PN Spin Taylor inspiralMerger
— and ringdown are attached in an wall I‘l
ad hoc manner - |.| .||||||||||m
g gl

||||| ‘

" 3.5PN Spin Taylor
Spinning Kludge

| L
12 12.2 124 125 12.8 13
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Detection Efficiency
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Parameter Accuracy: EOBNR Injections
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Parameter Accuracy: Other

Phenomenological Injections
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Signal based veto

* Triggers from separate instruments are
slid wrt each other
» Accidental coincidences

» Could not have arisen due to true |
gravitational wave event

» Estimate of our background "

* Signal based vetoes help us reduce |
accidental coincidences

» Separate background from injections
» Improve confidence of detection

» Monte-Carlo injections help us tune the
pipeline to reject accidental coincidences
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PN

Graphics: Becky Tucker
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Chi-square Signal-Based Veto

EOBNR Injections

Phenom. Injections

Kludge Injections

-

H1 chisq vs sor

k-4
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Tuning: Detection Statistic

We want as many injections as Py = X N
possible to have pe ff louder ( X )(Hp_)
than our loudest background 2= 2 Pe
trigger.
We try to maximize our D¢ f £
weighted efficiency g
» Most of the population will be at e
large effective distance (hence “E a0
small SNR) §
» These are the signals that we need Lj
to separate from the background. %“"
Ei’“m“u o =0 e o it
magic number
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Tuning detection statistic

wT-""I i oo T i i L | i oot

om oMM I]'.I.jﬂl:-t:llﬂl'.lﬂ
w oxxx Time slides
eff anr = 14. 2322088379 using 250
W8 eff snr = 6.68841711935 using 10
I —— =nr over chi at 380372095108

S
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E-thinca : A new coincidence aI%orithm

IFO Data

Template bank placement

I Inspiral Stage (Correlations)

I No expensive sig. based vetos

Coincidence

1>

Second Inspiral
+ with signal based
12 vetos X’

2nd
Coincidence

- o
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»

»

»

»

engupta, Robinson and Sathyaprakash, 2008
Sengupta, Gupchup and Robinson, 2008

Coincidence windows replaced by
error ellipsoids associated with each
trigger

Error ellipsoids determined by the
metric in the space of parameters

One tunable parameter:
— ellipsoid scaling factor, e,

Introduces parameter dependence,

— but also uses information about
correlation

— Volume of ellipsoid ~30x less than
equivalent standard windows
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Motivations for parameter-dependent approach

Sources at fixed SNR

10" = ! SEmmpemmemina
| T AGUIGO RS A » Error in measurement of
10 VIRGO =

parameters vary widely across BBH
parameter space.

Emors in t,_

» Suggests fixed-window
coincidence method is not optimal
for BBH searches.

Errors in chirp mass

Emorsin efa

» Motivated the development of
analysis using parameter-
dependent windows.

Mass of the binary (M_)

K.G. Arun, B. R lyer, B.S. Sathyaprakash, P.R.
Sundararajan, 2004
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Ellipsoid model for the triggers

» Ellipsoids
— Position vector of the centre
— Shape matrix 9

» Mathematical definition of the
ellipsoids
EFG)={FeA|F-P" ¥4 x-7) <1}

Metric codes in correlation between » Where,
parameters. % I
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Contact Function

» Contact function to test overlap of ellipsoids

F(?J;j)=maxog,\517(é,j)
where,

1,

Figy ={M1=0 7L DG+ (=067 ) |

Perram & Werthiem, 1985,
_ _ Journal of Computational Physics
» Function is bound between 0 <A <1

» Second derivative of contact function F¢; w.r.t parameter A is
negative definite. This implies a unique maximum in the above
interval.

» Ellipsoids labeled i and j are deemed to overlap ifF(l,j) is less than

1.
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Overlap of ellipsoids-2
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Ellipsoid coincident analysis method

If ellipsoids of triggers from different IFO’s overlap, they are deemed

coincident

Coincident

0.5 4

/

= 0,45

P

Tn
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Time Slides and injections using standard
coincidence method

10°

Py » 39952 (Background)

» 883 found out of 1925
(Injections)
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Time Slides an injections using ellipsoid
coincidence method
(ellipsoid scaling factor =0.5)

L]

PN x10

/ reduction

3

10

P » 38967 (Background)

» 878 found out of 1925

(Injections)

Chandigarh IISERM November 2010

31



Tuning: E-thinca parameter

E-thinca parameter ve combined efectivesnr for H1 and L1 triggers

LD
F vue s LU (i) 1605 cojecidemcm
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i e :
oz I :n‘.ﬁ'. .............................................
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E sk 3 S
B <X
g g
! A
3 04 B e
ra at
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B0 LI . e
l:!. P '. s
3 ¥ ¥ ..
" L uIJF g
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E-thines parameter
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Tuning the e-thinca parameter

Detection probability of the search vs e-thinca cuts

0.23 1
0.21

0.19 | | | |
0.17

0.15

0.13

0.11

0.09

Detection Probability

0.07

0.05

0.4 0.9 1.4
e-thinca cut

BNS

B MN5BH
BEH
SPININI

Fixed false alarm probabiity
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H1H2 Time Slides

* To estimate the background, we slide data
from different interferometers in time

* Sliding H1 and H2 relative to one another
underestimates the rate of coincident
glitches

 This causes an underestimate of the HiH2
and HiH2La backgrounds

* HaandH2 should be slid together

* This will fix the HiH2L1 background,
although the HiH2 background cannot be
estimated

Chandigarh IISERM November 2010

Plot of number coincident H1 H2 triggers per time slide
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Multi-Variate Statistical Classifier (MVSC)
Hodge, Sengupta, Weinstein 2010
« MVSC combines many ethinea 1)
different features of atrigger P x* ~_°
Into a single number between g
0 and 1, with O being noise-
like and 1 being signal-like.

« Generation of the MVSC
statistic is fully automated

- Uses a machine-learning
technigue known as a random MVSC
forest of bagged decision
trees

dt Py

More features?

r"2 veto duration

Chandigarh IISERM November 2010
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= limeslides

+ irfesdions

= limezlides {
= injections
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Forest of decision trees

Bagging = Bootstrap
Aggregating
- For a training set of size
N, randomly choose N
events, with replacement.

- For each tree, choose
only a few features (ie p
(H1), dn, e-thinca) to use in
that tree.

Example
Decision
Tree

- Generate many decision
trees, have them decide by
vote.

37
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The MVSC Player

Random Forest
of Bagged
Decision Trees

~ MVSC
values

Training set
Ba
: L Validation set
Injections
Cache File “nd -~
Timeslides
—>
Test sets
P Zero-lag set
ero-lag -
Triggers

Pat Files

Html Files,
Plots, etc.
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MVSC improves the low SNR sensitivity of our
searches

104 MVSC vs Effective SNR
i ! U | T T T

|« x Timeslides
+ + Injections
— Cutoff (50 false alarms)

Combined effective SNR squared

1 1 1 1 1 1 1
10 0.0 0.2 0.4 0.6 0.8 1.0

MVSC
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MVSC improves the low SNR sensitivity of our

searches

ROC curve

Efficiency (arbitrary units)

MVSC
Effective SNR

Operating point |

FEEY |
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Singular value decomposition of templates
Cannon, Hanna, Keppel et al. 2010

* Singular value decomposition
» Factorization of the signal matrix of size it X J

N
A= Vo Uy,

vr=1

» Matched filtering reduces to
Po = Hyj 0 s;

» The eigen values rapidly decrease as a result of which only a few
eigen vectors (or SVD'd templates) are required to reconstr
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1=
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Signal to noise re-construction

Only a few eigen-vectors can reconstruct the statistic accurately

1Y

[?J 101 ;
B |
A/,Lj —_ VILH/O-I/UI/] :
v=1 & 1070
S -
o
= -
g9
Po = 5 © 55 N . .
0 50) 100 150
# Bases

Out of a bank of 912 templates
‘X1O speed-up ! I
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GW detectors worldwide

Improve confidence, coverage and collaboration

* GEO
VIRGO

— Current status

— Low frequency: seismic isolation
— advanced Virgo

LIGO-VIRGO collaboration (LVC)

— Manpower

— Analysis tools
— Joint projects
LCGT, ET

Space based GW detectors
— PathFinder
— | ISA, DECIGO, BBO

Chandigarh [ISERM November
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All interferometers run simultaneously and detect gravitational
wave signal within a few msec.

Locate source by triangulation

Decompose the polarisation of gravitational waves.

Chandigarh IISERM November 2010
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Source Localization using a network of 2detectors

30

0.9
32 .
0.8
34 8
- 0.7
36
10.6
38
S 10.5
Q 40
= 0.4
42
o 10.3
46 0.2
48 0.1

250 245 240 235 230 225 220 215
RA (°)

BBH (10 M@ ) ringdown at 1 Mpc injected towards the minimum of L1 sensitivi

Waveforms obtained from Lazarus's numerical simulations. Duration about 7 nr
central frequency 500 Hz. Optimum 3 detector SNR is 85.
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Adding GEO-600 to the picture
30

250 245 240 235 230 225 220 2156
RA ()
Despite its smaller size, GEO 600 is designed to
have similar sensitivity
as the LIGO instruments at higher frequencies.
Implications for target of opportunity searches

Chandigarh IISERM November 2010
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Optimum location of a new detector

* Given an existing network of LIGO-Virgo detectors,
» where should one put an additional detector ?
» What should be its orientation angle ?

* Define a figure of merit

» How would this new detector augment the 'coherent’ detection of
binary inspiral sign als ? Searle, Scoftt, McLelland and Finn

» In other words, coherent volume Séngupta, Maghami, Shreshtha and M

» and 'coincident' signals ?

» Usual simplifications
— Uniform distribution of such sources
— Ignore differences in sensitivity

Chandigarh IISERM November 2010 48



Improvement to the coherent detection

30" N A

30" S

Maghami, Sengupta, Ajith

.............

— 6% difference between best and worst sites (70% for coincident)
— varying orientation changes detection by 2% (9% for coincident)
— fifth detector has almost no effect in coherent search but 25%

. Mitra 2010

1

09

10.8

10.7

06

0.5

Location Merit

fewer for coincident search
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