

Multi-detector GWave Coherent search Veto

Archana Pai

Indian Institute of Science Education and Research, Thiruvananthapuram

- GWaves \equiv Ripples of the space-time fabric
- Travel with speed of light
- Strain Amplitude $h = \frac{2G}{rc^4} \frac{d^2Q}{dt^2}$
- GWaves carries 2 polarisations in GR.

- GWaves \equiv Ripples of the space-time fabric
- Travel with speed of light
- Strain Amplitude $h = \frac{2G}{rc^4} \frac{d^2Q}{dt^2}$
- GWaves carries 2 polarisations in GR.

- GWaves \equiv Ripples of the space-time fabric
- Travel with speed of light
- Strain Amplitude $h = \frac{2G}{rc^4} \frac{d^2Q}{dt^2}$
- GWaves carries 2 polarisations in GR.

- GWaves \equiv Ripples of the space-time fabric
- Travel with speed of light
- Strain Amplitude $h = \frac{2G}{rc^4} \frac{d^2Q}{dt^2}$
- GWaves carries 2 polarisations in GR.

- GWaves \equiv Ripples of the space-time fabric
- Travel with speed of light
- Strain Amplitude $h = \frac{2G}{rc^4} \frac{d^2Q}{dt^2}$
- GWaves carries 2 polarisations in GR.

GWaves from Compact Binaries 1pc = 3.26 light yrs

Typical equal mass Binary system Total Mass: $m = 1.4 M_{\odot}$, Orbital radius: $R = 10^6 km$ Orbital period: 7.75*hrs*, Distance: $r = 5 kpc = 1.5 \times 10^{17} m$ $(KE)_{nonsp} \sim MR^2 \omega^2 = 10^{39} kg m^2/s^2$

$$h\sim {G({\it KE})_{nonsp}\over rc^4}\sim 10^{-21}$$

Masses, Sky Location, Distance, Polarisation, TOA, POA

Waveform:

$$\begin{split} h_+(t) &= A_+(t)\cos\Phi(t) \\ h_\times(t) &= A_\times(t)\sin\Phi(t) \\ \text{Freq.: } f &\propto \mathcal{M}^{-5/8}(t_{coal} - t)^{-3/8} \\ \text{Amp: } A_{+,\times}(t;\epsilon,r,\mathcal{M}) &\propto r^{-1} \\ &\propto \mathcal{M}^{5/3} \\ &\propto f^{2/3} \end{split}$$

GWaves from Compact Binaries 1pc = 3.26 light yrs

Masses, Sky Location, Distance, Polarisation, TOA, POA

Waveform:

$$\begin{split} h_+(t) &= A_+(t) \cos \Phi(t) \\ h_\times(t) &= A_\times(t) \sin \Phi(t) \\ \text{Freq.: } f \propto \mathcal{M}^{-5/8} (t_{coal} - t)^{-3/8} \\ \text{Amp: } A_{+,\times}(t;\epsilon,r,\mathcal{M}) \propto r^{-1} \\ &\propto \mathcal{M}^{5/3} \\ &\propto f^{2/3} \end{split}$$

- Chirp duration $\tau_0 \propto \mathcal{M}^{-5/3}$, Smaller the masses \rightarrow Longer the chirp $M = 2.8 M_{\odot}, \tau_0 = 25 sec, f_s = 40 Hz$
- Detector response

 $s(t) = F_+ \ h_+(t) + F_ imes \ h_ imes(t) = \mathcal{A}(t; heta^lpha) \cos(\Phi(t) + \chi(heta^lpha))$

Can not separate all parameters using single detector \bullet Power spectrum of chirp $|s(f)|^2 \propto f^{-7/3}$

Matched Filtering : Detecting Compact Binaries

GWave detection: Weak signal embedded in the noisy data Known spectral shape signal == Matched Filtering is optimal

Matched Filtering : Detecting Compact Binaries

GWave detection: Weak signal embedded in the noisy data Known spectral shape signal == Matched Filtering is optimal

Matched filtering:

$$Y = X \otimes Q$$
 $q(f) = M h(f)/N(f) \Rightarrow SNR_{MF}^2 = \int \frac{|h(f)|^2}{N(f)} df$

Matched Filtering : Detecting Compact Binaries

GWave detection: Weak signal embedded in the noisy data Known spectral shape signal == Matched Filtering is optimal

Matched filtering:

$$Y = X \otimes Q$$
 $q(f) = M h(f)/N(f) \Rightarrow SNR_{MF}^2 = \int \frac{|h(f)|^2}{N(f)} df$

- . . 0

GWave detection is a statistical problem

GWave Detection:

- Known shape Matched filtering/Maximum Likelihood approach
- Filter the data through the template bank spanning the parameter space
- Pick up that template which maximizes the LR; LR_{max}
- Estimate the false alarm rate from the instrument, obtain the threshold L_0
- Check if $LR_{max} > < L_0$

GWave detection is a statistical problem

GWave Detection:

- Known shape Matched filtering/Maximum Likelihood approach
- Filter the data through the template bank spanning the parameter space
- Pick up that template which maximizes the LR; LR_{max}
- Estimate the false alarm rate from the instrument, obtain the threshold L_0
- Check if $LR_{max} > < L_0$

GWave Vetos:

Veto events of noise origin which mimic like GWave transients

- Check correlations with the oscilliary channels
- χ^2 veto Allen 1999
- r² veto Shawhan and Ochsner 2004

$$\chi^2$$
 Veto – Allen PRD 1999

To separate non-Gaussian noise transients from the binary transients

- Idea: Check consistency of event power with the binary inspiral
- Divide frequency band in p sub-templates

$$C_l(t) = 4 \int_{f_k}^{f_{k+1}} \tilde{q}(f) \tilde{x*}(f) / N(f) e^{2\pi i f t} df$$

- Note that $\langle C_l(t) \rangle = C(t)/p$ Chirp frequency increases monotonically with time Construct $\chi^2 = p \sum_l |C_l(t) - C(t)/p|^2 = p \sum_l |\Delta C_l|^2$
- Noise is Gaussian: ΔC_l is gaussian RV and χ^2 obeys chi2-distribution with 2p 2 DOF $\Rightarrow \chi^2$ is small.
- Non-Gaussian noise: Makes χ^2 large. Threshold on χ^2 .

r² Veto – Shawhan and Ochsner 2004

Feature: χ^2 veto for large signal amplitude inspirals

Property of χ^2 statistics: 1/ Outside the chain of boxes, no other region in time-frequency plane affects the χ^2 2/ χ^2 is very sensitive to small mismatch

For large signal amplitude inspirals

- Drawback: Might veto out the actual inspiral signal due to small mismatch
- Idea: Introduce SNR dependent χ^2 threshold $ightarrow r^2$ statistic

 $\chi^2 < 40 + 0.15 \rho_{max}^2$

Network Schemes

Coincident Network Analysis

Signal phase is not accounted

Network Schemes

Coherent Network Analysis -- Signal Phase is accounted

Multi-detector Coherent Formalism for 1. binary Chirps ; [AP, Bose, Dhurandhar PRD 2001] 2. unmodeled chirps – Aperture Synthesis via Synthetic streams [AP, Chassande-Mottin, Rabaste PRD 2008]

Maximize Network Likelihood Ratio: $\Lambda = - \|\mathbf{x} - \Pi \mathbb{P}\|^2 + \|\mathbf{x}\|^2 \quad \mathbf{s} = \Pi \mathbb{P} \quad \mathbf{X} = \begin{bmatrix} \mathbf{x}_1 & \dots & \mathbf{x}_d \end{bmatrix}_{N \times d}$ Solve Linear LSQ:- Pseudo-inverse of Π *i.e.* $\hat{\mathbb{P}} = V_{\Pi} \Sigma_{\Pi}^{-1} U_{\Pi}^H \mathbf{x}$

Maximize Network Likelihood Ratio: $\Lambda = -\|\mathbf{x} - \Pi \mathbb{P}\|^{2} + \|\mathbf{x}\|^{2} \quad \mathbf{s} = \Pi \mathbb{P} \quad \mathbf{X} = \begin{bmatrix} \mathbf{x}_{1} & \dots & \mathbf{x}_{d} \end{bmatrix}_{N \times d}$ Solve Linear LSQ:- Pseudo-inverse of Π *i.e.* $\hat{\mathbb{P}} = V_{\Pi} \Sigma_{\Pi}^{-1} U_{\Pi}^{H} \mathbf{x}$ Network MLR: $\Lambda(\hat{\mathbb{P}}) = \|U_{\Pi}^{H} \mathbf{x}\|^{2} = \|(U_{\mathbb{D}}^{H} \otimes U_{\varnothing}^{H})\mathbf{x}\|^{2}$

Maximize Network Likelihood Ratio: $\Lambda = -\|\mathbf{x} - \Pi \mathbb{P}\|^{2} + \|\mathbf{x}\|^{2} \quad \mathbf{s} = \Pi \mathbb{P} \quad \mathbf{X} = \begin{bmatrix} \mathbf{x}_{1} & \dots & \mathbf{x}_{d} \end{bmatrix}_{N \times d}$ Solve Linear LSQ:- Pseudo-inverse of Π *i.e.* $\hat{\mathbb{P}} = V_{\Pi} \Sigma_{\Pi}^{-1} U_{\Pi}^{H} \mathbf{x}$ Network MLR: $\Lambda(\hat{\mathbb{P}}) = \|U_{\Pi}^{H} \mathbf{x}\|^{2} = \|(U_{\mathbb{D}}^{H} \otimes U_{\varnothing}^{H})\mathbf{x}\|^{2}$ $U_{\mathbb{D}}^{H} \mathbf{X}^{T} U_{\varnothing}$ Project data on to U_{\varnothing} first and then combine with weights
[AP, Dhurandhar, Bose, PRD 2001]

Maximize Network Likelihood Ratio: $\Lambda = -\|\mathbf{x} - \Pi \mathbb{P}\|^{2} + \|\mathbf{x}\|^{2} \quad \mathbf{s} = \Pi \mathbb{P} \quad \mathbf{X} = \begin{bmatrix} \mathbf{x}_{1} & \dots & \mathbf{x}_{d} \end{bmatrix}_{N \times d}$ Solve Linear LSQ:- Pseudo-inverse of Π *i.e.* $\hat{\mathbb{P}} = V_{\Pi} \Sigma_{\Pi}^{-1} U_{\Pi}^{H} \mathbf{x}$ Network MLR: $\Lambda(\hat{\mathbb{P}}) = \|U_{\Pi}^{H} \mathbf{x}\|^{2} = \|(U_{\mathbb{D}}^{H} \otimes U_{\varnothing}^{H})\mathbf{x}\|^{2}$ $\underbrace{U_{\mathbb{D}}^{H} \mathbf{x}^{T}}_{U_{\varnothing}} U_{\varnothing}$

(a) Project data on to $U_{\mathbb{D}} \rightarrow$ Synthetic streams (b) Matched filtering of synthetic streams [AP, Chassande-Mottin, Rabaste, PRD 2008]

Maximize Network Likelihood Ratio: $\Lambda = -\|\mathbf{x} - \Pi \mathbb{P}\|^{2} + \|\mathbf{x}\|^{2} \quad \mathbf{s} = \Pi \mathbb{P} \quad \mathbf{X} = \begin{bmatrix} \mathbf{x}_{1} & \dots & \mathbf{x}_{d} \end{bmatrix}_{N \times d}$ Solve Linear LSQ:- Pseudo-inverse of Π *i.e.* $\hat{\mathbb{P}} = V_{\Pi} \Sigma_{\Pi}^{-1} U_{\Pi}^{H} \mathbf{x}$ Network MLR: $\Lambda(\hat{\mathbb{P}}) = \|U_{\Pi}^{H} \mathbf{x}\|^{2} = \|(U_{\mathbb{D}}^{H} \otimes U_{\varnothing}^{H})\mathbf{x}\|^{2}$ $U_{\mathbb{D}}^{H} \mathbf{X}^{T} U_{\varnothing}$

(a) Project data on to U_D → Synthetic streams
(b) Matched filtering of synthetic streams
[AP, Chassande-Mottin, Rabaste, PRD 2008]
For a D detector network
1/ 2 synthetic streams: Y₁ = Xd₁ and Y₂ = Xd₂

 $\hat{\boldsymbol{\Lambda}} \propto |\boldsymbol{\Phi}^{H}\boldsymbol{Y}_{1}|^{2} + |\boldsymbol{\Phi}^{H}\boldsymbol{Y}_{2}|^{2}$

2/D-2 Null streams. D=3 gives 1 null stream [Wen,Schutz CQG 2005]

Coherent detection is expensive : Example: Newtonian chirp with multi-detectors

Signal detector : $\{t_a, \mathcal{M}, \delta, A\}$ Numerical maximisation : \mathcal{M} Matched filtering technique, scan the \mathcal{M} space Look for the maximum in the filtered output Templates: M = 5000, $m_1 = m_2 = 0.5 M_{\odot}$, $N = 10^6$ Comp Cost: $\sim 6 * M * N * log_2 N \rightarrow 1.5 GFlops$

Computational Cost

Coherent detection is expensive : Example: Newtonian chirp with multi-detectors

Signal detector : $\{t_a, \mathcal{M}, \delta, A\}$ Numerical maximisation : \mathcal{M} Matched filtering technique, scan the \mathcal{M} space Look for the maximum in the filtered output Templates: M = 5000, $m_1 = m_2 = 0.5 M_{\odot}$, $N = 10^6$ Comp Cost: $\sim 6 * M * N * log_2 N \rightarrow 1.5 GFlops$

Multi-detectors: $\{t_a, \mathcal{M}, \delta, A, \epsilon, \psi, \theta, \phi\}$ AP, Dhurandhar, Bose 2001 Numerical maximisation : $\mathcal{M}, \theta, \phi$ Matched filtering technique, scan the $\mathcal{M}, \theta, \phi$ space Look for the maximum in the filtered output Templates: $\mathcal{M} \sim 7500, \ \Omega \sim 25000 \rightarrow Tens \ of \ Tflops$

Proposed work in LSC

Proposed work in LSC

- Aim: Low Latency Coherent Search
- 1. Fold-in aperture synthesis
- 2. Investigate fast sky search methods Application:
- Targetted Externally trigger GRB search in S6 data

Proposed work in LSC

Aim: Obtain multi-detector χ^2 veto.

Aperture synthesis would give better approach to χ^2 veto lssues:

1/ Can we fold-in noise features of information to obtain modified χ^2

2/ Criterio for frequency subintervals

Collaborators

People involved in formalism development

- Archana Pai, IISER-TVM
- H. Tagoshi, Osaka University
- Sanjeev Dhurandhar , IUCAA Pune
- Anand S. Sengupta, Delhi University
- N. Kanda, Osaka City University
- H. Takahashi, Yamanashi Eiwa College
- Haris M. K., IISER-TVM, India

IndIGO subgroup involved in implementation in LSC

- Haris M. K., IISER-TVM, India
- Anand S. Sengupta, Delhi University
- Archana Pai, IISER-TVM, India

Japanese subgroup has plans to join LSC