

THE UNIVERSITY OF WESTERN AUSTRALIA

Opto-mechanical interactions in advanced gravitational wave detectors

Li Ju

University of Western Australia

Outline

- Introduction
- Opto-acoustic Interactions
- Parametric Instability
- Observation of Parametric Interactions
- Schemes for Parametric Instability Control

Introduction

- International collaboration on investigating parametric instability in advanced detectors with Gingin facility
 - Testing the theory
 - Designing suppression schemes
 - Testing suppression techniques
- Collaboration Partners
 - Jesper Munch (U. Adelaide)
 - Gregg Harry (MIT)
 - Stan Whitcomb, Yanbei Chen (Caltech)
 - Stefan Gossler (AEI)
 - Antoine Heidman (ENS)

©LIGO Scientific Collaboration

High optical power effects

Thermal lensing

The optical power absorbed by test masses induces thermal expansion + thermal optical coefficient change

 \rightarrow lensing effect.

Parametric instability

Opto-acoustic interactions between test mass acoustic modes and arm cavity optical modes could lead to excitation of test mass acoustic mode

→instabilities

Parametric interaction in an optical cavity

3-mode interaction requires frequency matching and spatial overlap of acoustic and optical modes

Three Mode Parametric Interactions

Stokes process:

A photon of frequency ω_0 is scattered into a lower frequency photon ω_1 , and emit a phonon of frequency ω_m \rightarrow Parametric instability

Anti-Stokes process:

The scattering crates a higher frequency photon ω_l , absorption the phonon ω_m

 \rightarrow Cooling of the acoustic mode

Parametric Gain R

$R \propto Q_0 Q_1 Q_m$

- input power P_{in}
- main cavity Q₀
- high order mode Q₁
- Acoustic mode Q_m
- Spatial overlap B
- Frequency condition $\Delta \omega$

 $R = \pm \frac{\delta P_{in} Q_0 Q_1 Q_m}{L^2 \omega_0 \omega_m} \frac{\gamma B}{1 + (\Delta \omega / \delta_l)^2}$

R>1 \rightarrow instability R<0 \rightarrow damping Parametric Instability in Advanced Detectors

- Braginsky predicted that advanced detector would have parametric instability problem
 Braginsky, et. al. *Phys. Lett. A*, 287, 331-338 (2001)
- UWA group did detailed modelling
 - •There would be many unstable modes
 - •R is sensitive to the Radius of Curvature (RoC) of the test masses in the cavity

The ring up time constant 1/τ~ Rω_m/Q_m Zhao, et al, Phys. Rev. Lett. 94, 121102 (2005) Ju, et al, Phys. Lett. A, 354, 360-365 (2006), Gras, et al, Class. Quantum. Grav., 26 015002 (2010) Ju, et al, Phys. Lett. A, 355, 419-426 (2006)

Modeling of Parametric Instability in High power Cavities

Radius of Curvature of the end mirrors of the cavity

RoC ETM = 2048.4

Ring Up Time

Example

- Fused silica $Q_m \sim 10^7$
- $f_m \sim 30 kHz$
- R~10

 $x=x_0e^{t/\tau}, \ \tau \sim Q_m/\omega_m(R-1)$

from $x \sim 10^{-4}$ m (thermal peak) to $x \sim 10^{-9}$ m (lose lock)

t~10s!

Experimental observation of parametric interaction

- Excite acoustic mode electrostatically
- Thermally tuning the cavity mode gap $(\omega_0 \omega_1)$ using a Compensation Plate
- Observe the high order (TEM01) power change with $(\omega_0 \omega_1)$.

Observation of 3-mode Parametric Interactions

Zhao, et d Phys Rev. A

78 023807(2008)

•Witnessed two high order transverse modes corresponding to two different mechanical modes of the mirror parametric gain ~ 0.01

Control Strategies

- Reduce acoustic Q of test masses
 - Ring damper
 - Acoustic mode damper
 - Electrostatic feedback
- Change $\Delta \omega$ (RoC tuning)
- Optical feedback control

Ring dampers

- Ring dampers
 - Eliminate most of the unstable modes
 - Have small thermal noise penalties

Acoustic Mode Dampers

- Damper to absorb the energy of the "dangerous" test mass modes (broadband)
- MIT investigation
 - tested PZT damper Q
 - S. Gras (UWA graduate) modelling
- Effective damping of the Q of many modes but thermal noise exceed Advanced LIGO noise budget
- Needs more careful investigation of damper attachment

S. Gras, et al, LIGO document LIGO-G1001023-v1

Electrostatic damper

- Advanced LIGO electrostatic actuator could be used to damp the Q of the acoustic modes
- no issue of thermal noise degrading
- Difficulties
 - For multiple mechanical modes excitation, each mode needs a control loop
 - Identify the mechanical modes

J. Miller, et al, *Phys. Lett. A*, **375**, 788-794 (2011)

Optical feedback control

Proposed ETM injection schematic

Proof of Principle Experiment

f, A modulation

2 optical modes injection

Fan, et. al, Class. Quantum. Grav., 27 084028 (2010)

Demonstration of optical feedback control principle

23

3 mode interactions applications

- High sensitive transducer for test mass acoustic modes
- Very strong coupling due to gain $\sim Q_0 Q_1 Q_m$
- Laser noise immunity
- 3 mode transducer is equivalent to a signal recycling interferometer

Opto-Acoustic Transducer

180kHz Acoustic mode thermal Peak

*with unstabilised laser

Other applications of 3 mode interaction

• Miniature opto-acoustic parametric amplifier for micro-mechanic quantum experiments

Conclusions

- Parametric Instability is a threat to Advanced detector
- More research is needed to develop effective control method without degrading detector performance
- Gingin facility will continue to investigate PI and PI control

2 modes interaction (optical spring)

Frequency condition for 3 mode parametric interactions

2 optical modes & 1 mechanical mode

 Frequency conditions easily met in long cavities