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Introduction

 International collaboration on investigating parametric
instability in advanced detectors with Gingin facility
— Testing the theory
— Designing suppression schemes

— Testing suppression techniques

* Collaboration Partners
— Jesper Munch (U. Adelaide)
— Gregg Harry (MIT)
— Stan Whitcomb, Yanbe1 Chen (Caltech)
— Stefan Gossler (AEI)
— Antoine Heidman (ENS)
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Very high power inside cavities

~800kW
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High optical power effects

*Thermal lensing

The optical power absorbed by test masses induces thermal
expansion + thermal optical coefficient change

- lensing effect.
*Parametric instability

Opto-acoustic interactions between test mass acoustic
modes and arm cavity optical modes could lead to excitation
of test mass acoustic mode

—> instabilities



Parametric interaction in an optical cavity

Thermal vibration of
the mirror
Radiation pressure /

force W - =w,

Input .
frequency /

Cavity fundamental Stimulated |
mode 0, scattering into Acoustic modes
W

(Stored energy) high order mode m
wl

3-mode interaction requires frequency matching
and spatial overlap of acoustic and optical modes



Three Mode Parametric
Interactions

Stokes process:
A photon of frequency w), 1s scattered

into a lower frequency photon w,, and
emit a phonon of frequency w,
—> Parametric instability

Anti-Stokes process:
The scattering crates a higher
frequency photon w,, absorption the

phonon @,



Parametric Gain R

RUQQ,Q,

e 1nput power P 8P.0,0,0 yB

« main cavity Q, R=% wWw 1+(Aws)
 high order mode Q,

e Acoustic mode Q,, R>1-> instability

* Spatial overlap B R<0~> damping

* Frequency condition Aw



Parametric Instability in Advanced Detectors

* Braginsky predicted that advanced detector would have

parametric instability problem
Braginsky, et. al. Phys. Lett. A, 287, 331-338 (2001)

* UWA group did detailed modelling

*There would be many unstable modes
*R 1s sensitive to the Radius of Curvature (RoC) of

the test masses 1n the cavity

*The ring up time constant 1/~ Rw_/Q

Zhao, et al, Phys. Rev. Lett. 94, 121102 (2005)

Ju, et al,Phys. Lett. A, 354, 360-365 (2006),

Gras, et al, Class. Quantum. Grav., 26 015002 (2010)
Ju, et al, Phys. Lett. A, 355, 419-426 (2006)



Modeling of Parametric Instability
in High power Cavities
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Ring Up Time

Example x=x,e"", T00,/w,(R-1)

* Fused silica from x~10*m (thermal peak)
_ Qm~107 to  x~10"m (lose lock)

+ ~30kHz o

* R~10




Experimental observation of parametric

Intferaction
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hd Fundamental mode actuator
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* Excite acoustic mode electrostatically
* Thermally tuning the cavity mode gap (w,—w,) using a Compensation Plate

* Observe the high order (TEMO01) power change with (w,-w,) .



Observation of 3-mode Parametric Interactions

Zvo ,dd P R A B X7

= = = bLa b
Ly T Lh T Lan

TEMDO] power

LR 0.54 (.96 (.98

ik Pynarimanial I .
[y Experimental resall Cavity g factor

*Witnessed two high order transverse modes corresponding

to two different mechanical modes of the mirror parametric
gain ~ 0.01



Control Strategies

* Reduce acoustic QQ of test masses
— Ring damper
— Acoustic mode damper
— Electrostatic feedback

* Change Aw (RoC tuning)
* Optical feedback control



Ring dampers
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Acoustic Mode Dampers

Damper to absorb the energy of the “dangerous” test
mass modes (broadband)

MIT investigation
— tested PZT damper Q
— S. Gras (UWA graduate) modelling

Effective damping of the Q of many modes but
thermal noise exceed Advanced LIGO noise budget

Needs more careful investigation of damper
attachment

S. Gras, et al, LIGO document LIGO-G1001023-v1



Electrostatic damper

* Advanced LIGO electrostatic
actuator could be used to damp
the Q of the acoustic modes

* no issue of thermal noise
degrading
e Difficulties

— For multiple mechanical modes
excitation, each mode needs a
control loop

— Identify the mechanical modes

J. Miller, et al, Phys. Lett. A,
375, 788-794 (2011)



Optical feedback control

*Active method

wl = 0)0 - a)m
Wo 1. Mode shape
_/\A/\N\/\_> 2. Frequency
3. Phase
4. Power

4a)m



Proposed ETM injection schematic
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Proof of Principle Experiment

f, A modulation

2 optical modes injection

Fan, et. al, Class. Quantum. Grav., 27 084028 (2010)



Demonstration of optical feedback

control principle
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3 mode interactions applications

High sensitive transducer for test mass
acoustic modes

Very strong coupling due to gain~Q,Q,Q.

Laser noise immunity

3 mode transducer 1s equivalent to a signal
recycling interferometer



Opto-Acoustic Transducer

CO, laser



180kHz Acoustic mode thermal Peak

Noise floor 107 m/JHz

*with unstabilised laser



Other applications of 3 mode interaction

* Miniature opto-acoustic parametric
amplifier for micro-mechanic quantum
experiments



Conclusions

* Parametric Instability 1s a threat to
Advanced detector

* More research 1s needed to develop
effective control method without degrading
detector performance

* Gingin facility will continue to investigate
PI and PI control






2 modes interaction (optical spring)

the optical mode. No 3rd
mode involved
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Frequency condition for 3 mode parametric
interactions

High order
optical modes Cavity main mode

Anti-Stokes—=> Cooling | W,

* 2 optical modes & 1 mechanical mode
— Frequency conditions easily met in long cavities
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