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Monolithic Ring Laser
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Adelaide high power laser approach for
GWI’s

Injection-locked chain of lasers



Advanced LIGO prestabilized laser
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Planck Pre-Stabilized Laser
(Max contribution)

LIGO-Australia Cost Review




Pre-stabilized Laser
(Max Planck contribution)




The PSL meets all requirements
for Advanced LIGO







Travelling-Wave Resonator
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10W Slave Laser









Outputpower[W]

Inhomogeneous pumping leads to output power
saturation
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Composite end-pumped, side-
cooled folded zigzag slab
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Off-axis, zigzag end-
pumping
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Off-axis, zigzag end-
pumping
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Off-axis, zigzag end-
pumping

P um D m Pl

apert% X /Q







Injection locked oscillator
Unstable Resonator
Zig-Zag slab

End pumping

Birefringence control by defined gain medium
Improved pump uniformity across wavefront
Scalable to very high power




Latest design 100W Laser
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50-100W laser for Gingin, 2010

slope efficiency = 44%
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Stable, Single Frequency Er:YAG Lasers at 1.6 ©m

Nick Wei-Han Chang, David J. Hosken, Jesper Munch, Member, IEEE, David Ottaway, and Peter J. Veitch

Absiract—Stable, single frequency lasers in the eye-safe band are 1470-nm LD
essential for coherent remote sensing, We describe an Er:YAG laser
that is resonanily pumped using diede lasers, and produces a polar-
ized, single frequency, diffraction Himited beam at 1645 nm with a
frequency stahility suitable for single-shot velocity measurements
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with a precision< 0.1 ms "', I
ale f i Collimator BP Etalon

Index Terms—Er:YAG laser, resonant pumping, sin re- 1 Er:¥AG slab
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I INTRODUCTION

Fig. 1. Schematic of the laser. Abbreviations: LD, laser diode; PBS,

. S— e — - L _ . heam splitter; BF, Brewster-angled plate; OVC, out-coupler.
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Single frequency Er:YAG master laser

- combination

Pump

600mW pump diodes

End view of the slab




Single-mode output power

M2 measured = 1.02

*Roic = 95%
*Slope = 15%

2010/Sept/22 DSTO Workshop 2010



Single-frequency

Grating Spectrometer Fabry-Perot OSA
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Linewidth Measurement
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Crux of thermal problem

Absorbed power causes ‘thermal lensing’

Prediction of MELODY model of Advanced LIGO
Sideband power is scattered out of TEM,

Instrument failure at approximately 2 kW

Advanced GWI cannot achieve desired sensitivity unaided




How to maintain cavity
finesse?

sensitivity < A/600 at 820 nm*

suitable for use in active compensation system
reliable

easy to install in advanced GWI




Thermal Compensation
System (TCS)

* Ring Heater (4 units)
* CO2 Laser Projector (2 units)
* Hartmann Sensor (2 units)
— Provided by Australian partners Prototype of Baseline Ring Heater

(nichrome wire would around glass
former, within reflective shield)

LIGO-Australia Cost Review



Why use a Hartmann
wavefront sensor?

— easy to align
— don’t need microlens array
— ultra-sensitive and accurate




Hartmann Wavefront Sensor:
How It Works




Hartmann WFS measures local
wavefront gradient (@)
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Measurement system for
testing HWS




Measurement system for
testing HWS




Measurement system for
testing HWS




Single-frame wavefront error =
A/1500




Sensitivity can be improved to
A/15,500
by averaging




HWS is shot-noise limited







Hartmann sensor configuration
folded interferometer



Hartmann Sensor Progress




LIGO-Australia promotes
Research and collaboration

*Lasers
*Optics, including NLO
*Adaptive optics







diagnostic bread board
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beam diagnostic tool

power noise (low f and rf)
frequency noise
higher order mode content

beam pointing (differential
wavefront sensing)

automatic length and alignment
control

can switch from lock to scan mode

performs complete beam analysis
without human interaction (at night
during long term test)

allows fast turn around between
laser optimization and
characterization



Pre-stabilized Laser
(Max Planck contribution)
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Introduce well-defined
wavefront defocus

by moving the light source

Expect wasfrontgradient Ay/L [ y, -slopegivesmeasurediefocus
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