

GENERAL RELATIVITY

S. V. DHURANDHAR

IUCAA

PUNE

December 2010

Relativity on the Streets

- \forall Accuracy of ~ 20 − 30 nanosec ~ few metres \forall Satellite velocity ~ 14,000 km/hr, R ~ 20,000 km
- SR time-dilation 7 microsec per day
- GR 45 microsec per day
- 38 microsec gives 10 km off

✓ **Relativitistic corrections** a **MUST** for GPS to function accurately

December 2010

Galilean Principle of Relativity

Laws of Mechanics are the same in all Inertial Frames (IF)

IF: If the net external force acting on a body is zero, it is possible to find a set of reference frames (moving uniformly with respect to each other) in which the body has no acceleration. These frames are called IF.

Newton's I law

Newton's II $\stackrel{\rightarrow}{F} = m \stackrel{\rightarrow}{a}$ law: x' = x - vt, y' = y, z' = zalilean transformations: (Nobody talks of time – its obvious !!!)

- Force, mass, acceleration are invariant whatever IF we adopt
- Kinetic energy, velocities may be different but the LAWS remain the same covariance

Range of Newtonian mechanics: Macro-molecules – GalaxiesDecember 2010Delhi School

Maxwells Equations Their form does not remain the same under Galilean transformations but under Lorentz Transformations

Lorentz Transformations:

$$x' = (x - vt)\gamma, \quad y' = y, \quad z' = z, \quad ct' = (ct - vx/c)\gamma,$$
$$\gamma = (1 - v^2/c^2)^{-1/2}$$

December 2010

What happens to Mechanics?

instein's Solution:

Change mechanics so that its laws are orm invariant under Lorentz transformations

December 2010

New definition of momentum

Law of momentum conservation should hold in all IF

Newtonian defn: p = mass times velocity does NOT work

$$p_x = m_0 \frac{dx}{d\tau}$$

 τ is the proper time as measured by the particle

 $p = m_0 v \gamma$ With this defn momentum is conserved

December 2010

Postulates of Special Relativity

• Principle of Relativity:

The laws of physics are the same for observers in all Inertial Frames (IF).

There is no experiment in physics that singles out a preferred intertial frame.

• Constancy of speed of clight: × 10⁵ km/sec

The speed of light c is the same in all Interchia 2015 rames Delhi School

So far mechanics, electrodynamics (optics) has been Relativised - Gravity ?

The Newtonian theory: Inverse square law

$$\vec{F} = -G \frac{m_1 m_2}{r^2} \hat{r}$$

Gravity signals travel instantaneously

Inconsistent with SR (Never mind Mercury)

Need a new theory of gra@dyeral Theory of December 2010 Delhi School

General Relativity

Observation 1:

Newton's I law: A body moves in straight line

Einstein asks: Where are the straight lines ???

Earth, moon, satellites, stones, cricket balls – ALL move on curves !

Newton's I law holds but only approximately in small regions and for short time

So we cannot have global IFs but local IFs - LIFs Delhi School

Observation 2:

The force of gravity is mass proportional But we know other forces having the same property - centrifugal, coriolis $F_{cor} = m v \times \omega$ $F_{cent} = m r \omega^2$

They appear in rotating frames but disappear otherwise **Q: Is the same true with gravity?**

December 2010

Answer: Yes! But with a caveat

Go to the freely falling frame ... Gravity does disappear but in a small region of SPACETIME

Local Inertial Frame (LIF)

Principle of Equivalence !

December 2010

Principle of Equivalence

Principle of Equivalence (WEP):

All masses fall with the same acceleration

Experimental verification!

Principle of Equivalence (SEP):

The laws of physics are the same in all LIFs

December 2010

Curved Spacetime

Glue all the LIFs together - curved spacetime

CURVATURE

December 2010

Gravitation:

Manifestation of the curvature of spacetime

December 2010

December 2010

Curvature in 2D

K > 0

The 3 angles of the triangle do not add up to 180°

Signature of curvature !

$$A + B + C = \pi + \delta$$
$$\delta = \int_{\Delta} K \, dS$$
$$K = \frac{1}{R^2}$$

December 2010

Delhi Schoc

Negative curvature

$A + B + C < \pi$ $A + B + C = \pi + \delta$ $\delta < 0$

K < 0

December 2010

4 – dimensional generalisations of metric and curvature

 $ds^{2} = E du^{2} + 2 F dudv + G dv^{2}$ $\rightarrow ds^{2} = g_{ij} dx^{i} dx^{j}$

 $K \rightarrow R^{i}_{jkl}$ i, j, k, l = 0, 1, 2, 3

December 2010

Einstein's Field Equations

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

Geometry = Matter distribution

Spacetime grips mass, telling it how to move, and mass grips spacetime, telling it how to curve

- John Archibald Wheeler

Compare with Newton's equation $\nabla^2 \phi = 4\pi G \rho$

December 2010

Minkowski Spacetime

$T_{ik} \square 0$ throughout spacetime

$$ds^{2} = c^{2} dt^{2} - (dx^{2} + dy^{2} + dz^{2})$$

$$R^i_{jkl} \equiv 0 \quad \rightarrow \quad \phi \equiv 0$$

December 2010

The Newtonian limit

Weak field, slow motion limit:

$$T_{00} = \rho c^2 >> other T_{ik}$$

Einstein's equations reduce to Newton's equation

$$\nabla^2 \phi = 4\pi G \rho$$

$$ds^{2} = (1 + \frac{2\phi}{c^{2}})c^{2}dt^{2} - (1 - \frac{2\phi}{c^{2}})(dx^{2} + dy^{2} + dz^{2})$$

December 2010

Schwarzschild Solution (1916)

Solution of Einstein's Equations for a non-rotating uncharged point mass

$$ds^{2} = \left(1 - \frac{2m}{r}\right)c^{2} dt^{2} - \left(1 - \frac{2m}{r}\right)^{-1} dr^{2} - r^{2} d\Omega^{2}$$

$$m = \frac{M G}{c^2}$$

Blackhole Solution!

December 2010

Cosmological Solutions: Robertson-Walker universes

$$ds^{2} = c^{2}dt^{2} - S^{2}(t) \underbrace{\frac{dr^{2}}{\sqrt{-kr^{2}}}}_{-kr^{2}} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}) \underbrace{\frac{d}{\sqrt{2}}}_{k}$$

$$k = \Box 1,0$$

$$S^{2} + k = \frac{8\pi G}{3}\rho S^{2}$$
 Einstein's equation

$$\frac{d}{dS}(\rho S^{3}) = -3p S^{2}$$
 Energy conservation equation

$$p = p(\rho)$$
 Equation of state

p = 0 or dust: Friedmann solutions

December 2010

MASSES OSCILLATE :

December 2010

Waves in the curvature of spacetime

Waves in curvature: K keeps flipping sign In higher dimensions $R^{(0)}_{hijk} e^{-i\omega t}$

December 2010

Wave solutions

Weak field :	$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$
Lorentz gauge :	$\hat{h}_{,v}^{\mu\nu} = 0$
Linearised Einstein's Eq. :	$\bar{\mathbf{Wh}}_{\mu\nu} = \frac{16\piG}{c^4} T_{\mu\nu}$
Trace reverse:	$\bar{h}_{\mu\nu} = h_{\mu\nu} - \frac{1}{2}\eta_{\mu\nu} h$
Trace :	$h = h^{\mu}_{\mu}$

Plane wave solutions: TT gauge

Source free:

$$Wh_{\mu\nu} = 0$$

$$h_{\mu\nu} = A_{\mu\nu} e^{ik_{\alpha}x^{\alpha}}$$

Gauge conditions:

Transverse:

Traceless:

$$h^{\mu\nu}_{,\nu} = 0 \quad \textcircled{P}_{\mu\nu} k^{\nu} = 0$$

$$h = h^{\mu}_{\mu} = 0 \quad \textcircled{P}_{\mu\nu} k^{\nu} = 0$$

$$\exists U^{\mu} \quad \textcircled{P}_{\mu\nu} U^{\nu} = 0$$

Transverse Traceless (TT) gauge: Two polarisations

December 2010

Space-time warpage in the fabric of spacetime travels with the speed of light
 Dynamic concentrations of matter
 Decay in the orbit of the
 binary pulsar PSR 1913+16

Hulse & Taylor 1993

Gravitational Waves EXIST!

December 2010

GRAVITATIONAL WAVE ASTRONOMY

- Enormous differences between GW and EM
- Produced by bulk motions of matter
- Compact objects: Blackholes, neutron stars
- Not easily scattered: Hi fidelity info
- EM (f > 10^7 Hz) while GW (f < 10^4 Hz)
- -Information orthogonal to EM revolution

PROBES OF THE UNIVERSE

GW ASTRONOMY !!

December 2010

Detection: Effect on test particles

Free test particles move along geodesics Curvature and geodesics:

Sphere

K > 0

Hyperboloid

Geodesics move closer

December 2010

Delhi Schoo

Geodesics move away

Gravitational wave and geodesics

Gravitational wave
 Curvature oscillates
 The sign of the curvature keeps flipping

 The length of the connecting vector oscillates

Time

 $R^{(0)}_{hijk} e^{-i\omega t}$

December 2010

General wave: Linear combination of plus and cross

December 2010

Detection principle on ground

Michelson interferometer measuring changes in relative lengths of arms formed between "free" test mass

PRINCIPLE OF DETECTION

Test mass

Test mass

Photo-detector

December 2010

LIGO Louisiana 4 km armlength (US)

VIRGO 3 km armlength Pisa, Italy

December 2010

CURRENT DETECTOR STATUS

Several large scale laser interferometric detectors constructed: armlength of 300 m to 4 km
LIGO, VIRGO, GEO, TAMA, AIGO, LCGT
LIGO, VIRGO, TAMA, GEO : already taking data

Science runs

- Space based detector LISA 5 million km
- Launch date 2020

December 2010

Technology pushed to the limits

Vacuum better than 10° torr 1.22 m aperture x 4000 m arms ~9.4 x 10° m³ (each site) ~10° Joule of stored energy

The noise floor

- Seismic noise at low frequencies
- Thermal noise at mid frequencies
- Shot noise at high frequencies – quantum nature of light

December 2010

We did it !

*http://www.ligocaltech.edu/~lazz/distribution/LSC_Data

December 2010

• Inspiraling binaries:

Neutron stars (NS), Blackholes $h \sim 10^{-23}$ for 2 NS at 200 Mpc

- Rotating NS, Accreting NS LMXBs
 Sco X-1
- Supernovae
- Stochastic background Early Universe

Parametric amplification

December 2010

Source Strengths

Binary inspiral :

$$h \sim 2.5 \times 10^{-23} \left[\frac{M}{M_{sun}} \right]^{5/3} \left[\frac{r}{100 \, Mpc} \right]^{-1} \left[\frac{f_a}{100 \, Hz} \right]^{2/3}$$

Periodic:

$$h \sim 1.9 \times 10^{-25} \left[\frac{I}{10^{45} gm.cm^2} \right] \left[\frac{f}{500 Hz} \right]^2 \left[\frac{r}{10 \ kpc} \right]^{-1} \left[\frac{\varepsilon}{10^{-5}} \right]$$

Stochastic background:

$$\tilde{h}(f) \sim 10^{-26} \left[\frac{f}{10 \, Hz}\right]^{-3/2} \left[\frac{\Omega_{GW}(f)}{10^{-12}}\right]^{1/2}$$

December 2010

Inspiraling compact binaries

Most promising source for interferometric detectors
Waveform is well modeled by PN approximations

December 2010

Matched filtering the signal

Waveform well modeled: The matched filter

$$c(\tau) = \int x(t) q(t+\tau) dt$$

Stationary noise:

$$\tilde{q}(f) = \frac{h(f)}{S_h(f)}$$

Optimal filter in Gaussian noise:

Detection probability is maximised for a given false alarm rate

December 2010

Matched filtering the inspiraling binary signal

December 2010

- A Collaborative ESA / NASA Mission to observe lowfrequency gravitational waves
- Cluster of 3 S/C in heliocentric orbit at 1 AU
- S/C contain lasers and free-flying test masses
- Equilateral triangle with 5 Million km arm-length

- Trailing the earth by 20°
 - Equivalent to a Michelson interferometer Thermal & seismic motions of mirror
 - masses and pendulums

THE LISA PROJECT

Orbit of LISA

Cluster rolls once per year around its centre

LISA noise curve

LISA SCIENCE

Fundamental Physics:

• Tests of strong field GR by mergers of comparable mass BHs:

- Area theorem before/after measurements of M and J
- **Cosmic Censorship** is a/M > 1 after merger?
- Stellar mass BH falling into a massive BH few per year upto

1 Gpc (Sigurdson and Rees, Phinney) - EMRIs
High SNR - Test no-hair theorem ~ detailed waveforms with
10⁵ cycles in the last year 10 M falling into 10⁶ M BH

Observe GW bursts from cosmic strings or other exotic sources
 December 2010 Delhi School

LISA SCIENCE contd

Astrophysics:

- Detect BH mergers in the range 10⁵ 10⁷ M
- Study compact WD binaries
 obtain mass spectrum ...
- Detect hundreds of EMRIs
 obtain spectrum of masses, spins

Discover unexpected sources, dark matter components

FUTURE DIRECTIONS

- Future bright: 10 Hz to kHz Network of LIGO, VIRGO, GEO, LCGT, ...
- Sensitivity upgrades: Amplitude, Band-width
 (For example: LIGO improved by factor ~ 100 just in amplitude sensitivity in 2 years)
 Initial detectors upto 2008
 - Advanced detectors > 2008
- LISA will open the low frequency window
 10⁴Hz 1 Hz
 Many detections! High SNR