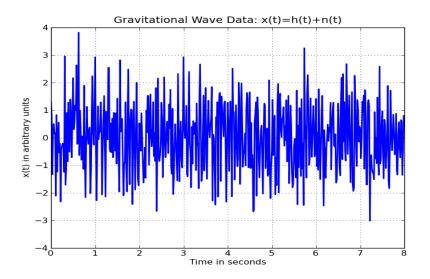
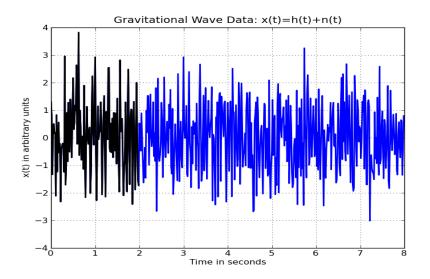


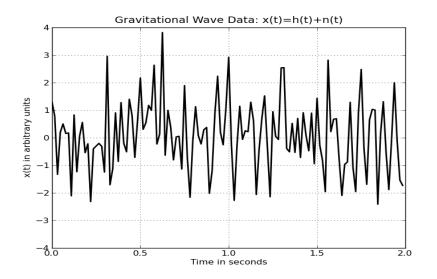
Matched Filtering Technique

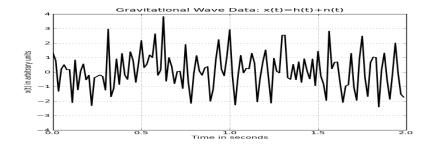
Archana Pai

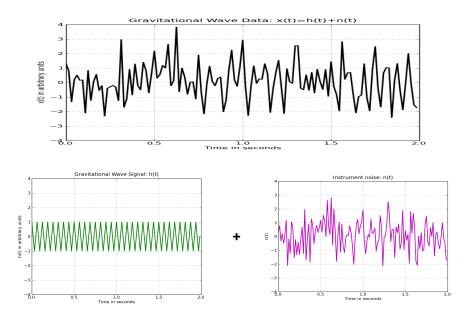
Indian Institute of Science Education and Research Trivandrum

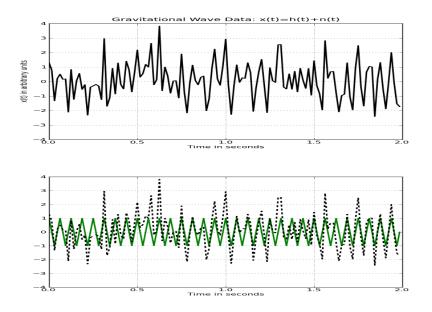


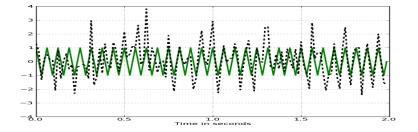




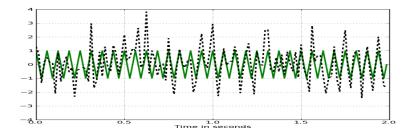








Questions to address: Is there any Gravity-Wave signal in the data?



Questions to address:

Is there any Gravity-Wave signal in the data? What kind of source and its astrophysical parameters?

Conv of
$$x(t)$$
 and $q(t)$: $X \otimes Q$
 $y(T) = \int x(t) q(T-t) dt$

X

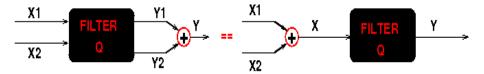
FILTER
Y

Q

Conv of x(t) and q(t): $X \otimes Q$

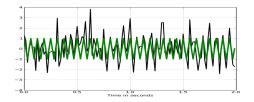
$$y(T) = \int x(t) \ q(T-t) \ dt$$

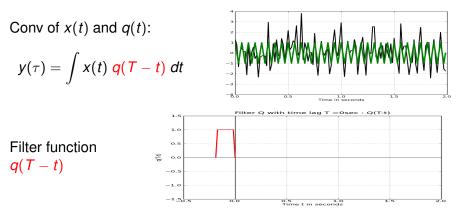
Linearity of a filter:

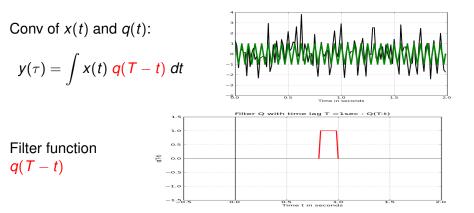


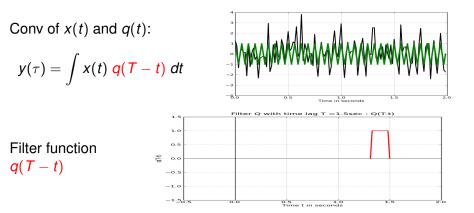
Conv of x(t) and q(t):

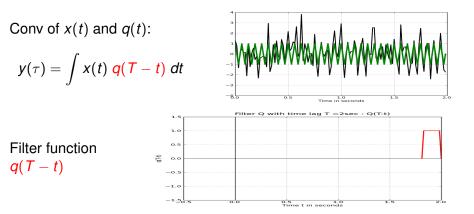
$$y(\tau) = \int x(t) \ q(T-t) \ dt$$





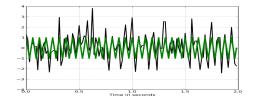






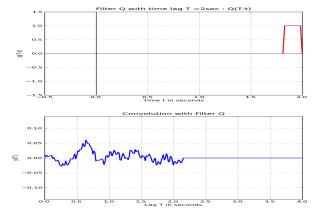
Conv of x(t) and q(t):

$$y(\tau) = \int x(t) \ q(T-t) \ dt$$



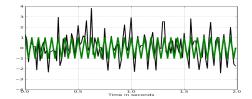
Filter function q(T - t)

Filter Output y(T)



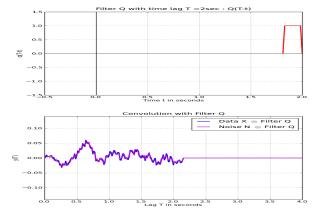
Conv of x(t) and q(t):

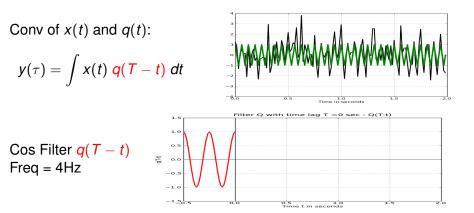
$$y(\tau) = \int x(t) \ q(T-t) \ dt$$

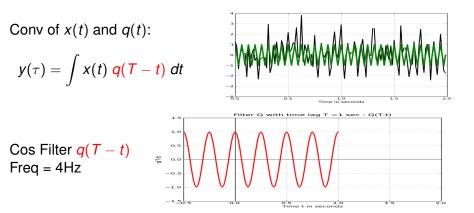


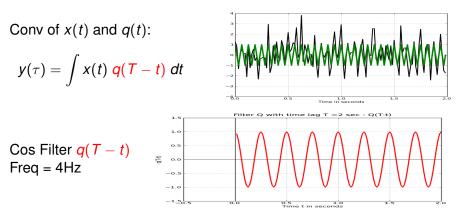
Filter function q(T - t)

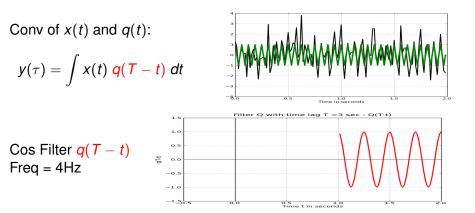
Filter Output y(T)





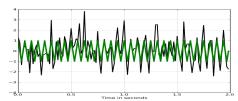


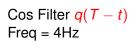


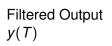


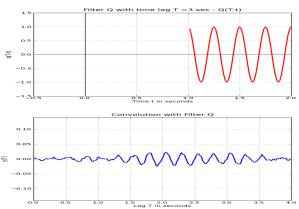
Conv of x(t) and q(t):

$$y(\tau) = \int x(t) \ q(T-t) \ dt$$



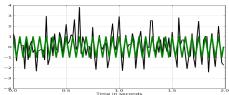


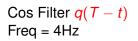


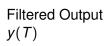


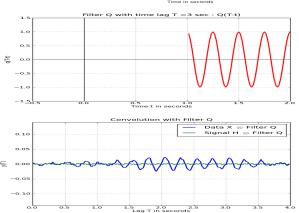
Conv of x(t) and q(t):

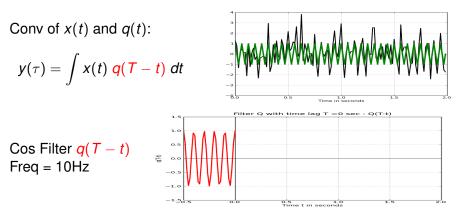
$$y(\tau) = \int x(t) \ q(T-t) \ dt$$

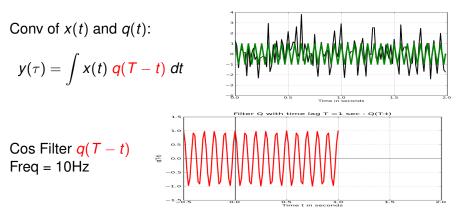


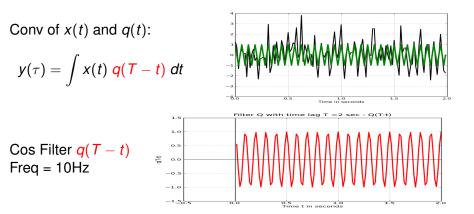


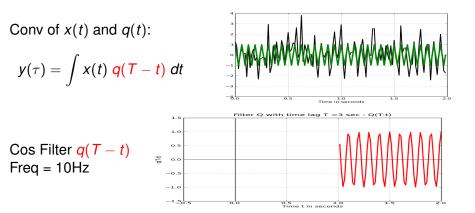






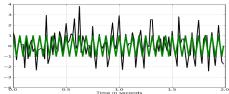


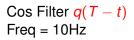




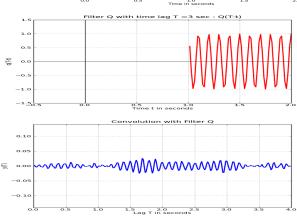
Conv of x(t) and q(t):

$$y(\tau) = \int x(t) \ q(T-t) \ dt$$



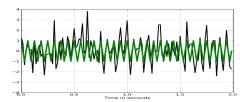


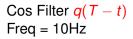
Filtered Output y(T)



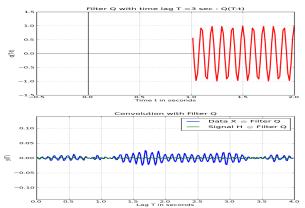
Conv of x(t) and q(t):

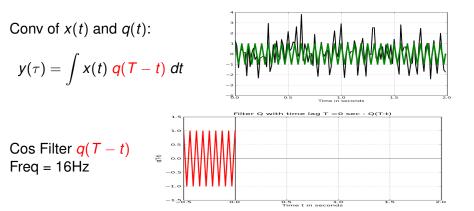
$$y(\tau) = \int x(t) \ q(T-t) \ dt$$

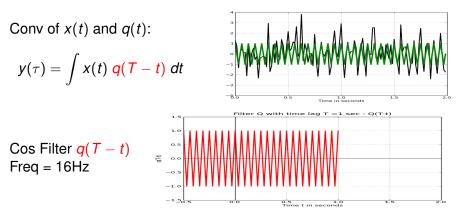


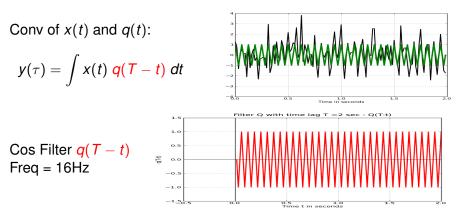


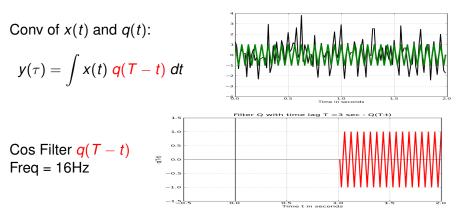
Filtered Output y(T)





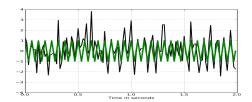






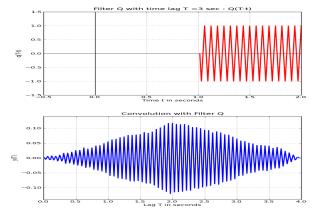
Conv of x(t) and q(t):

$$y(\tau) = \int x(t) \ q(T-t) \ dt$$



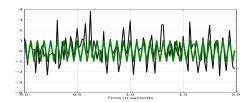
Cos Filter q(T - t)Freq = 16Hz

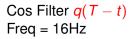
Filtered Output y(T)



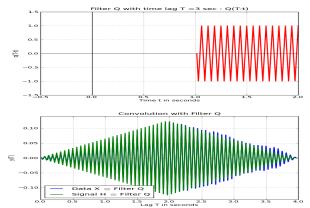
Conv of x(t) and q(t):

$$y(\tau) = \int x(t) \ q(T-t) \ dt$$





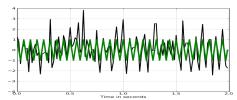
Filtered Output y(T)

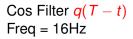


Linear Filtering of Data

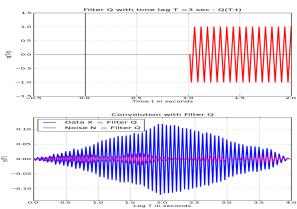
Conv of x(t) and q(t):

$$y(\tau) = \int x(t) \ q(T-t) \ dt$$





Filtered Output y(T)



Assume: GW signal is hidden in the noise

Assume: GW signal is hidden in the noise

Take home lesson –

<u>Assume:</u> GW signal is hidden in the noise Take home lesson – Best filter depends on signal shape

Assume: GW signal is hidden in the noise Take home lesson – Best filter depends on signal shape Phase matching is crucial for signal detection

<u>Assume:</u> GW signal is hidden in the noise <u>Several Questions</u>

<u>Assume:</u> GW signal is hidden in the noise <u>Several Questions</u>

GW signal - Known/Unknown shape?

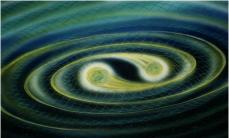
Assume: GW signal is hidden in the noise

Several Questions

GW signal - Known/Unknown shape?

Known signal

Compact Binary Stars Neutron Star – Black Hole Neutron Star – Neutron Star Black hole – Black hole



<u>Assume:</u> GW signal is hidden in the noise <u>Several Questions</u>

GW signal - Known/Unknown shape?

Known signal Pulsars – Pulsating Neutron Stars

Hester et al, 2003; CXC, HST, NASA

<u>Assume:</u> GW signal is hidden in the noise <u>Several Questions</u>

GW signal - Known/Unknown shape?

Unknown/Unmodeled signal Supernova event [DA IV] Accreting systems [DA IV]



- <u>Assume:</u> GW signal is hidden in the noise <u>Several Questions</u>
- GW signal Known/Unknown shape? Signal of known shape

<u>Assume:</u> GW signal is hidden in the noise Several Questions

GW signal – Known/Unknown shape?

Signal of known shape

What is the best filter in presence of noise? [DA III]

Assume: GW signal is hidden in the noise

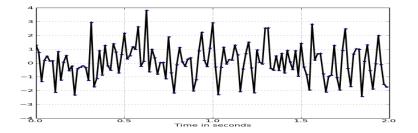
Several Questions

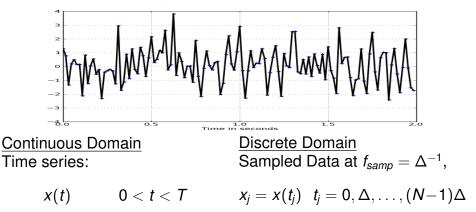
GW signal – Known/Unknown shape?

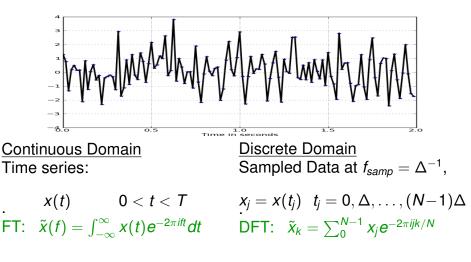
Signal of known shape

What is the best filter in presence of noise? [DA III]

Parameters affect the signal phase? One/Many ? How filters should be spaced? Phase mismatch between filter and signal? — [DA V]







Continuous Domain Time series: $\frac{\text{Discrete Domain}}{\text{Sampled Data at }} f_{samp} = \Delta^{-1},$

 $\begin{array}{ll} x(t) & 0 < t < T & x_j = x(t_j) & t_j = 0, \Delta, \dots, (N-1)\Delta \\ \vdots & \tilde{x}(f) = \int_{-\infty}^{\infty} x(t)e^{-2\pi i f t} dt & DFT: & \tilde{x}_k = \sum_{0}^{N-1} x_j e^{-2\pi i j k/N} \\ & \tilde{x}(f) = \tilde{x}(f_k) \Rightarrow \Delta \times \tilde{x}_k & f_k = k/T \end{array}$

Continuous Domain Time series: $\frac{\text{Discrete Domain}}{\text{Sampled Data at }} f_{samp} = \Delta^{-1},$

$$\begin{array}{ll} x(t) & 0 < t < T & x_j = x(t_j) & t_j = 0, \Delta, \dots, (N-1)\Delta \\ \vdots \\ \mathsf{FT:} & \tilde{x}(f) = \int_{-\infty}^{\infty} x(t) e^{-2\pi i f t} dt & \mathsf{DFT:} & \tilde{x}_k = \sum_{0}^{N-1} x_j e^{-2\pi i j k/N} \\ & \tilde{x}(f) = \tilde{x}(f_k) \Rightarrow \Delta \times \tilde{x}_k & f_k = k/T \end{array}$$

IFT: $x(t) = \int_{-\infty}^{\infty} \tilde{x}(t) e^{2\pi i f t} df$ DIFT: $x_j = \frac{1}{N} \sum_{0}^{N-1} \tilde{x}_j e^{2\pi i j k/N}$

Continuous Domain Time series:

Discrete Domain Sampled Data at $f_{samp} = \Delta^{-1}$,

. x(t) 0 < t < T. FT: $\tilde{x}(t) = \int_{-\infty}^{\infty} x(t) e^{-2\pi i t t} dt$ $x_j = x(t_j)$ $t_j = 0, \Delta, \dots, (N-1)\Delta$ DFT: $\tilde{x}_k = \sum_{i=1}^{N-1} x_i e^{-2\pi i j k/N}$ Т

$$\tilde{x}(f) = \tilde{x}(f_k) \Rightarrow \Delta \times \tilde{x}_k \qquad \qquad f_k = k/k$$

IFT: $x(t) = \int_{-\infty}^{\infty} \tilde{x}(t) e^{2\pi i t t} dt$ Parseval Theorem:

$$\int x^2(t)dt = \int |\tilde{x}(t)|^2 dt$$

DIFT: $x_i = \frac{1}{N} \sum_{0}^{N-1} \tilde{x}_i e^{2\pi i j k/N}$

$$V \sum_{0}^{N-1} y_j z_j = \sum_{0}^{N-1} \tilde{y}_k \tilde{z}_k^*$$

Continuous Domain Time series: $\frac{\text{Discrete Domain}}{\text{Sampled Data at }} f_{samp} = \Delta^{-1},$

 $\begin{aligned} x(t) & 0 < t < T \\ FT: & \tilde{x}(t) = \int_{-\infty}^{\infty} x(t)e^{-2\pi i f t} dt \end{aligned} \qquad \begin{array}{l} x_j = x(t_j) & t_j = 0, \Delta, \dots, (N-1)\Delta \\ DFT: & \tilde{x}_k = \sum_{0}^{N-1} x_j e^{-2\pi i j k/N} \end{aligned}$

$$\tilde{x}(f) = \tilde{x}(f_k) \Rightarrow \Delta \times \tilde{x}_k$$
 $f_k = k/2$

 $\begin{array}{ll} \mathsf{IFT:} \ x(t) = \int_{-\infty}^{\infty} \tilde{x}(f) e^{2\pi i f t} df & \mathsf{DIFT:} \ x_j = \frac{1}{N} \sum_{0}^{N-1} \tilde{x}_j e^{2\pi i j k/N} \\ \hline \mathsf{Convolution} \ Y = X \otimes Q; & \\ y(T) = \int x(t) \ q(T-t) dt & \qquad y_j = \sum_{l=0}^{N-1} x_l \ q_{j-l} \end{array}$

Noise: White and Colored

What is the color of the noise?

Noise: White and Colored

What is the color of the noise? White noise == White light

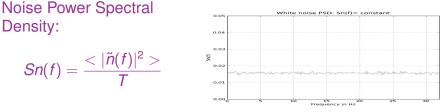
What is the color of the noise?

White noise == White light

White light == All colors in equal proportions White noise == All frequencies in equal proportions Frequency spectrum is flat

What is the color of the noise?

White light == All colors in equal proportions White noise == All frequencies in equal proportions Frequency spectrum is flat



Application : Elctronic music, Audio testing etc

Noise: White and Colored

What is the color of the noise? What is the colored noise?

Noise: White and Colored

What is the color of the noise?

What is the colored noise?

How to obtain blue color from white color??

What is the color of the noise?

What is the colored noise?

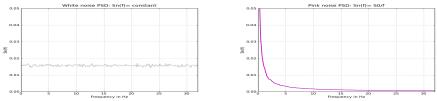
Colored noise - Pass white noise through a band-pass filter

What is the color of the noise?

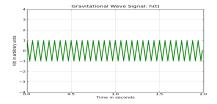
Colored noise - Pass white noise through a band-pass filter

Example: Power law noise Noise power spectrum $1/f^{\alpha}$

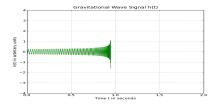
 $\alpha = 0, 1, 2, \ldots \Rightarrow$ white, pink, brown, \ldots noise



Signal – Known shape

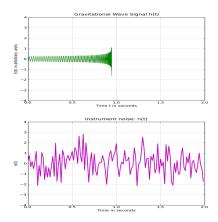


Signal – Known shape

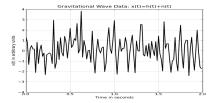


Signal – Known shape

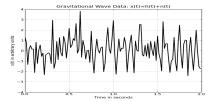
Noise - White

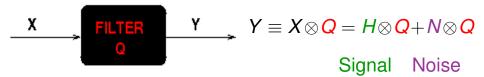


Data x(t) = h(t) + n(t)Known signal in Stationary noise

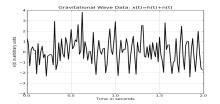


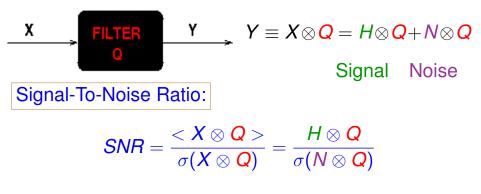
Data x(t) = h(t) + n(t)Known signal in Stationary noise





Data x(t) = h(t) + n(t)Known signal in Stationary noise





Signal-To-Noise Ratio:

$$SNR = \frac{\langle X \otimes Q \rangle}{\sigma(X \otimes Q)} = \frac{H \otimes Q}{\sigma(N \otimes Q)}$$

Which filter function Q optimises the SNR?

Signal-To-Noise Ratio:

$$SNR = \frac{\langle X \otimes Q \rangle}{\sigma(X \otimes Q)} = \frac{H \otimes Q}{\sigma(N \otimes Q)}$$

Recall — $y_j = \sum_{l=0}^{M-1} x_l \ q_{-l+j}$

Signal-To-Noise Ratio:

$SNR = \frac{\langle X \otimes Q \rangle}{\sigma(X \otimes Q)} = \frac{H \otimes Q}{\sigma(N \otimes Q)}$ Recall — $y_j = \sum_{l=0}^{M-1} x_l \ q_{-l+j}$ $= \sum_{l=0}^{M-1} x_l \ q_{l+j}^r$

$$SNR = \frac{\langle X \otimes Q \rangle}{\sigma(X \otimes Q)} = \frac{H \otimes Q}{\sigma(N \otimes Q)}$$

Recall — $y_j = \sum_{l=0}^{M-1} x_l q_{-l+j}$
 $= \sum_{l=0}^{M-1} x_l q_{l+j}^r$
 $= \frac{1}{M} \sum_{k=0}^{M-1} \tilde{x}_k \tilde{q} r_k^* e^{2\pi j k/M}$

$$SNR = \frac{\langle X \otimes Q \rangle}{\sigma(X \otimes Q)} = \frac{H \otimes Q}{\sigma(N \otimes Q)}$$

Recall — $y_j = \sum_{l=0}^{M-1} x_l q_{-l+j}$
 $= \sum_{l=0}^{M-1} x_l q_{l+j}^r$
 $= \frac{1}{M} \sum_{k=0}^{M-1} \tilde{x}_k \tilde{q} r_k^* e^{2\pi j k/M}$
 $Y = X \otimes Q = \frac{1}{M} (\tilde{X} \cdot \tilde{Q}^s)$

$$SNR = \frac{\langle X \otimes Q \rangle}{\sigma(X \otimes Q)} = \frac{H \otimes Q}{\sigma(N \otimes Q)}$$
$$Y = X \otimes Q = \frac{1}{M} (\tilde{X} \cdot \tilde{Q}^{s})$$
$$SNR^{2} = \frac{(\tilde{H} \cdot \tilde{Q}^{s})^{2}}{\langle (\tilde{N} \cdot \tilde{Q}^{s})^{2} \rangle}$$

$$SNR = \frac{\langle X \otimes Q \rangle}{\sigma(X \otimes Q)} = \frac{H \otimes Q}{\sigma(N \otimes Q)}$$
$$Y = X \otimes Q = \frac{1}{M} (\tilde{X} \cdot \tilde{Q}^{s})$$
$$SNR^{2} = \frac{(\tilde{H} \cdot \tilde{Q}^{s})^{2}}{\langle (\tilde{N} \cdot \tilde{Q}^{s})^{2} \rangle} = \frac{(\sum_{k=0}^{M-1} \tilde{h}_{k} \tilde{q}_{k}^{*})^{2}}{\sum_{l=0}^{M-1} S_{k} |\tilde{q}_{k}|^{2}}$$
$$Use: \text{Stationary} < \tilde{n}_{k} \tilde{n}_{k}^{\prime*} >= S_{k} \delta(k, k')$$

$$SNR = \frac{\langle X \otimes Q \rangle}{\sigma(X \otimes Q)} = \frac{H \otimes Q}{\sigma(N \otimes Q)}$$
$$Y = X \otimes Q = \frac{1}{M} (\tilde{X} \cdot \tilde{Q}^{s})$$

$$SNR^{2} = \frac{(\tilde{H} \cdot \tilde{Q}^{s})^{2}}{\langle (\tilde{N} \cdot \tilde{Q}^{s})^{2} \rangle} = \frac{(\sum_{k=0}^{M-1} \tilde{h}_{k} \tilde{q}_{k}^{*})^{2}}{\sum_{l=0}^{M-1} S_{k} |\tilde{q}_{k}|^{2}}$$

Use: Stationary $\langle \tilde{n}_{k} \tilde{n}_{k}^{\prime*} \rangle = S_{k} \delta(k, k')$
$$SNR^{2} = \left(\sum_{k=0}^{M-1} \frac{\tilde{h}_{k}}{\sqrt{S_{k}}} \tilde{q}_{k}^{*}\right)^{2} = (A \cdot \underline{B})^{2}$$

Signal-To-Noise Ratio:

 $SNR = \frac{\langle X \otimes Q \rangle}{\sigma(X \otimes Q)} = \frac{H \otimes Q}{\sigma(N \otimes Q)}$ $SNR^{2} = \frac{(\tilde{H} \cdot \tilde{Q}^{s})^{2}}{\langle (\tilde{N} \cdot \tilde{Q}^{s})^{2} \rangle} = \frac{(\sum_{k=0}^{M-1} \tilde{h}_{k} \tilde{q}_{k}^{*})^{2}}{\sum_{k=0}^{M-1} S_{k} |\tilde{q}_{k}|^{2}}$ Use: Stationary $\langle \tilde{n}_k \tilde{n}_k'^* \rangle = S_k \delta(k, k')$ $SNR_{max}^2 = \sum_{k=0}^{M-1} \frac{|\tilde{h}_k|^2}{S_k}$ Matched filter : $-\tilde{q}_k \propto \frac{h_k}{S_k}$

$$SNR_{max}^{2} = \sum_{k=0}^{M-1} \frac{|\tilde{h}_{k}|^{2}}{S_{k}} \qquad Matched \quad filter : \quad \tilde{q}_{k} = M \frac{\tilde{h}_{k}}{S_{k}}$$
$$Y = X \otimes Q = = y_{j} = \sum_{k=0}^{M-1} \tilde{x}_{k} \frac{\tilde{h}_{k}^{*}}{S_{k}} e^{2\pi j k/M}$$

k=0

Matched filter SNR

- Noise PSD $S_k = E(|\tilde{x}_k|^2)$ Measure of spectral noise variance
- White: All frequencies are present ($S_k = S_0$); $q_k \propto h_k$.
- Colored: Noise variance is a function of frequency.

Small $S_k \Rightarrow$ small variance.

More SNR contribution with small S_k frequencies. Demonstrates how noise distribution limits the sensitivity.

Band-pass operation: Allows data to pass through a frequency band given by the instrument (S_k).

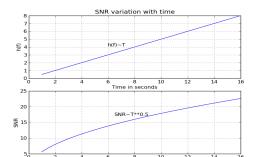
$$SNR_{MF}^{2} = \sum_{k=0}^{M-1} \frac{|\tilde{h}_{k}|^{2}}{S_{k}} = \int_{-\infty}^{\infty} \frac{|\tilde{h}(f)|^{2}}{S(f)} df \quad S(f) = \frac{T}{M^{2}}S_{k}$$

$$SNR_{MF}^{2} = \sum_{k=0}^{M-1} \frac{|\tilde{h}_{k}|^{2}}{S_{k}} = \int_{-\infty}^{\infty} \frac{|\tilde{h}(f)|^{2}}{S(f)} df \quad S(f) = \frac{T}{M^{2}}S_{k}$$

Sinusiod signal $h(t) = A \cos(2 \pi fo t)$ 0 < t < T

$$SNR_{MF}^{2} = \sum_{k=0}^{M-1} \frac{|\tilde{h}_{k}|^{2}}{S_{k}} = \int_{-\infty}^{\infty} \frac{|\tilde{h}(f)|^{2}}{S(f)} df \quad S(f) = \frac{T}{M^{2}} S_{k}$$

Sinusiod signal $h(t) = A \cos(2\pi \text{ fo } t) \qquad 0 < t < T$



 $|h(f)|^2 \sim A^2 T^2 \quad df = T^{-1}$ $|h(f)|^2 df \sim A^2 T$

 $A\sqrt{T}$ vs $\sqrt{S(f)}$

$$SNR_{MF}^{2} = \sum_{k=0}^{M-1} \frac{|\tilde{h}_{k}|^{2}}{S_{k}} = \int_{-\infty}^{\infty} \frac{|\tilde{h}(f)|^{2}}{S(f)} df \quad S(f) = \frac{T}{M^{2}}S_{k}$$

Sinusiod signal $h(t) = A \cos(2\pi fot) \qquad 0 < t < T$
$$\int_{0.15}^{0.25} \frac{Noise PSD vs Signal - T = 0.984375 seconds}{Noise: sqrt(Sr)} \int_{0.16}^{0.15} \frac{Noise PSD vs Signal - T = 0.984375 seconds}{\int_{0.16}^{0.15} \frac{Noise SQ}{S(f)} \int_{0.16}^{0.15} \frac{NO(f)}{S(f)} \int_{0.16}^{0.15} \frac{NO(f)}{S$$

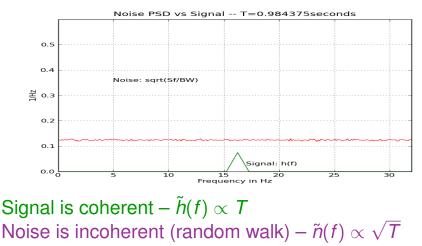
$$SNR_{MF}^{2} = \sum_{k=0}^{M-1} \frac{|\tilde{h}_{k}|^{2}}{S_{k}} = \int_{-\infty}^{\infty} \frac{|\tilde{h}(f)|^{2}}{S(f)} df \quad S(f) = \frac{T}{M^{2}}S_{k}$$

Sinusiod signal $h(t) = A \cos(2\pi fo t) \qquad 0 < t < T$

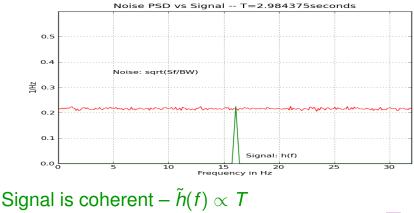
$$SNR_{MF}^{2} = \sum_{k=0}^{M-1} \frac{|\tilde{h}_{k}|^{2}}{S_{k}} = \int_{-\infty}^{\infty} \frac{|\tilde{h}(f)|^{2}}{S(f)} df \quad S(f) = \frac{T}{M^{2}}S_{k}$$

Sinusiod signal $h(t) = A \cos(2\pi fot) \qquad 0 < t < T$
$$\int_{0.15}^{0.25} \frac{N^{\text{oise PSD vs Signal -- T=6.984375seconds}}{S(f) = \frac{15}{20} \frac{$$

Sinusiod signal $h(t) = A \cos(2 \pi \text{ fo } t)$ 0 < t < T

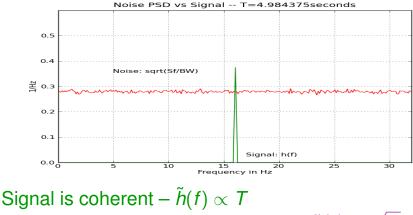


Sinusiod signal $h(t) = A \cos(2 \pi \text{ fo } t)$ 0 < t < T



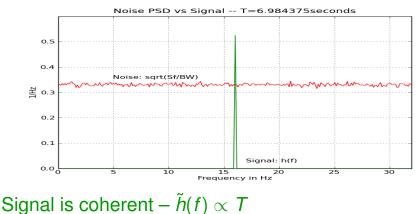
Noise is incoherent (random walk) – $\tilde{n}(f) \propto \sqrt{T}$

Sinusiod signal $h(t) = A \cos(2 \pi \text{ fo } t)$ 0 < t < T



Noise is incoherent (random walk) – $\tilde{n}(f) \propto \sqrt{T}$

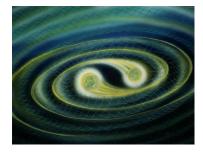
Sinusiod signal $h(t) = A \cos(2 \pi fo t)$ 0 < t < T



Noise is incoherent (random walk) – $\tilde{n}(f) \propto \sqrt{T}$

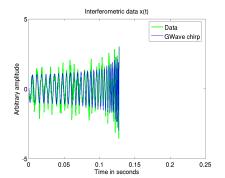
Matched filtering: Inspiral waveforms

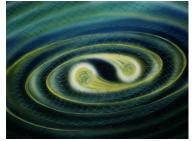
Compact binaries with NS, BH $h_+ \propto \frac{\mathcal{M}^{5/3}}{r} f^{2/3} \cos(2\pi \int f(t) dt)$ $h_{\times} \propto \frac{\mathcal{M}^{5/3}}{r} f^{2/3} \sin(2\pi \int f(t) dt)$ Chirp mass $\mathcal{M} = [\mu^3 M^2]^{1/5}$ Freq. $f \propto \mathcal{M}^{-5/8} (t_{coal} - t)^{-3/8}$



Matched filtering: Inspiral waveforms

Compact binaries with NS, BH $h_+ \propto \frac{\mathcal{M}^{5/3}}{r} f^{2/3} \cos(2\pi \int f(t) dt)$ $h_{\times} \propto \frac{\mathcal{M}^{5/3}}{r} f^{2/3} \sin(2\pi \int f(t) dt)$ Chirp mass $\mathcal{M} = [\mu^3 M^2]^{1/5}$ Freq. $f \propto \mathcal{M}^{-5/8} (t_{coal} - t)^{-3/8}$





Best matched

filter

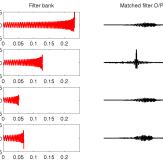


Illustration: Pick 10 random digits between 0-9 S1 - 3 4 6 2 1 0 9 8 2 6 S2 - 1 4 5 8 2 1 0 3 7 2 S3 - 1 2 3 4 0 2 4 7 8 3. . S98 - 3 2 6 2 1 0 7 8 3 6

S98 – 3 2 6 2 1 0 7 8 3 6 S99 – 1 3 5 8 1 1 0 5 7 8 S100 – 0 3 5 2 1 2 3 4 0 2

Illustration: Pick 10 random digits between 0-9 S1 - 3 4 6 2 1 0 9 8 2 6 S2 - 1 4 5 8 2 1 0 3 7 2 S3 - 1 2 3 4 0 2 4 7 8 3. . S98 - 3 2 6 2 1 0 7 8 3 6

S99 – 1 3 5 8 1 1 0 5 7 8 S100 – 0 3 5 2 1 2 3 4 0 2

Illustration. Pick 10 random digits between 0-9 S1 - 3462109826 $S_2 - 1458210372$ S3 - 1234024783S98 - 3262107836 S99 - 1358110578S100 - 0352123402Prob (1 2 3 4)? == 7 in 10 thousand

Illustration: Pick 10 random digits between 0-9 S1 - 3462109826 $S_2 - 1458210372$ S3 - 1234024783S98 – 3 2 6 2 1 0 7 8 3 6 S99 – 1 3 5 8 1 1 0 5 7 8 S100 - 0352123402

2 in 100 instead of 7 in 10000 - ??

Illustration: Pick 10 random digits between 0-9 S1 - 3 4 6 2 1 0 9 8 2 6 S2 - 1 4 5 8 2 1 0 3 7 2 S3 - 1 2 3 4 0 2 4 7 8 3. . S98 - 3 2 6 2 1 0 7 8 3 6

S98 - 3 2 6 2 1 0 7 8 3 6 S99 - 1 3 5 8 1 1 0 5 7 8 S100 - 0 3 5 2 1 2 3 4 0 2

Illustration. Pick 10 random digits between 0-9 S1 - 3462109826 $S_2 - 1458210372$ S3 - 1234024783S98 - 3 2 6 2 1 0 7 8 3 6 S99 - 1358110578S100 – 0 3 5 2 1 2 3 4 0 2

 $Prob (1 \ 0)? == 0.09$

Strategy -

- Decide which signals to look for? Which signal?
- Compute the false alarm probability
- Assess detection significanace by fixing the threshold

Strategy -

- Decide which signals to look for? Which signal?
- Compute the false alarm probability
- Assess detection significanace by fixing the threshold

Searching multi-parameter signal increases the false alarm rate

Time-Frequency analysis

