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Linear Filtering of Data

h(t) in arbitrary units
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Linear Filtering of Data

>(Ey=h(t)+nt)

Gravitational Wwawve Data

1.0
e 1IN seconds

1.0
Time in seconds




-
Linear Filtering of Data

< -
H
H
= H
1 - Fl
H - - H
2 - .
L] on , -
= - - - " 2
N H L 4
o
1
=
=
3o ols 1i's =.0

1.0
Time in seconds

Questions to address:
Is there any Gravity-Wave signal in the data?
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Questions to address:
Is there any Gravity-Wave signal in the data?
What kind of source and its astrophysical parameters?
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Conv of x(t) and g(t): X ® Q
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Conv of x(t) and q(t):

Filter function
q(T 1)

Filter Output y(T)
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Conv of x(t) and q(t):

Filter function
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Conv of x(t) and q(t):
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Conv of x(t) and q(t):

y(r) = / x(t) q(T — 1) ot

Cos Filter (T — 1)
Freq = 10Hz
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Conv of x(t) and q(t):
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Conv of x(t) and q(t):
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Assume: GW signal is hidden in the noise
Take home lesson —

Best filter depends on signal shape

Phase matching is crucial for signal detection
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Important questions in GW data analysis

Assume: GW signal is hidden in the noise
Several Questions

GW signal — Known/Unknown shape?

Known signal
Pulsars — Pulsating Neutron Stars

Hester et al, 2003; CXC, HST, NASA



Important questions in GW data analysis

Assume: GW signal is hidden in the noise

Several Questions

GW signal — Known/Unknown shape?

Unknown/Unmodeled signal
Supernova event [DA V]
Accreting systems [DA V]
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Important questions in GW data analysis

Assume: GW signal is hidden in the noise

Several Questions

GW signal — Known/Unknown shape?
Signal of known shape

What is the best filter in presence of noise? [DA 1]

Parameters affect the signal phase? One/Many ?

How filters should be spaced?
Phase mismatch between filter and signal? — /DA V]
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x=x() t=0A,...,(N-1)A
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Revise: Continuous and Discrete Fourier Transform

Continuous Domain

Time series:
x(t) O0<t<T
(f) fozc 27riftdt

X(f) = X(f) = A x X

Discrete Domain

Sampled Data at fygm, = A7,
X =x(t) t=0A,....(N-1)A
DFT: X =30 ' xe 2mik/N

fo=k/T
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Revise: Continuous and Discrete Fourier Transform

Continuous Domain Discrete Domain

Time series: Sampled Data at fsgmp = A7,

_ x(t) O0<t<T xi=x() t=0A,...,(N-1)A

FT: X(f) = [~_x(t)e 2""dt DFT: X = S0 xje2rik/N
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IFT: x(t) = [75_X(f)e*"™df DIFT: X = 1 8’*1 X;2wik/N

Parseval Theorem:
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Revise: Continuous and Discrete Fourier Transform

Continuous Domain Discrete Domain
Time series: Sampled Data at fsgmp = A7,
x(1) O<t<T xi=x(t) t=0A,....,(N-1)A
X(f) = [Z x(H)e #Mdt  DFT: % =Y0 ' xe 2nik/N
(f):;((fk):>AXXk fk:k/T
IFT: x(t) = [= x(f)e*™"df DIFT: ; = 4 SN 5 e2wik/N

Convolutlon Y=X®Q:

Y1) = [ x(0) a(T - =S xq
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Noise: White and Colored

What is the color of the noise?

White light == All colors in equal proportions
White noise == All frequencies in equal proportions
Frequency spectrum is flat

Noise Power Spectral nice noe e 2 R
Density:

< |A(fP >

Sn(f) -

Application : Elctronic music, Audio testing etc
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What is the color of the noise?
What is the colored noise?

How to obtain blue color from white color??
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What is the colored noise?

Colored noise - Pass white noise through a
band-pass filter
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Noise: White and Colored

What is the color of the noise?

Colored noise - Pass white noise through a
band-pass filter

Example: Power law noise Noise power spectrum 1/f
a = O 1,2,... = white, pink, brown, ... noise

White noise PSD: Sn()=constant .. Pinknoise PSD: Sn(f) = sosf

o.03 ooz\

.00, = T 3= 56
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Signal — Known shape

Noise — White
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Data x(t) = h(t) + n(t)
Known signal in Stationary
noise

ravitational Wave Data: x(H)=h(t)-+n(t)
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Data x(t) = h(t) + n(t) . |
Known signal in Stationary -

noise

eeeeeeeeeeeee

X -v_ Y= X®Q=HoQ+NeQ
Signal Noise

Signal-To-Noise Ratio:

<X®Q> HeQ
c(X®Q) o(N® Q)

SNR =
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Signal-To-Noise Ratio:

<X®Q> HeQ
c(X®Q) oN2Q)

Which filter function Q optimises the SNR?

SNR =
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Signal-To-Noise Ratio:

<X®Q> HeQ
c(X®Q) o(N® Q)
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Recall — Yi = Z/:O X1 g—1+j
_ M1 r
=0 X qryj
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Signal-To-Noise Ratio:

<X®Q> HeQ
o(X®Q) oNwQ)

SNR =
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Signal-To-Noise Ratio:

<X®Q> HeQ
c(X®Q) oN2Q)

SNR =

Recall — Y= z/:\/;l\i61 X1 g1+
-
=2~0 X1 9
M1 =% o
= 1 koo Xk q € M
Y=X®Q=4(X- Q)
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Signal-To-Noise Ratio:
<X®Q> HeQ

SNA = X5Q) ~ o(Ne Q)
Y =X0Q=5(X Q%)
S G
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Signal-To-Noise Ratio:

<X®Q> HeQ
c(X®Q) o(NoQ)

Y = XoQ=1(X-Q°)
SNR? = (’? : C:?S)z _ (o P G;)2
<(N-Qp > 5" Sclau?
Use: Stationary < 1,71 >= Sd(k, k')

SNR =
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Signal-To-Noise Ratio:
<X®Q> HeQ

SNR = sX®Q) o(N®Q)
Y = XoQ=1(X-Q)
e . (H-GP (7B g2

<(N-Q2> T Sk [aK?
Use: Stationary < n,n, >= Sii(k. k')

- 2
SNR? = SR — (A- B)?
= Z¢—S—k q,] =(A-B)
k=0
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Signal-To-Noise Ratio:

<X®Q> HeQ
o(X®Q) oNeQ)

onpe_ (A-CF (i he )
N.Os)2 ~ SV 5,12
<(N-@%)F> >° 70 Sk |Gk
Use: Stationary < nen,; >= Ski(k, k')

SNR =

~

. h
Matched filter : —qx Sk
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SNR2 ., = Z
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hk

2
SNR3,., = Z |h"| Matched filter : Gk = Mg

M N*
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k=0
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Matched filter SNR

M-1 7 7
hi|? . .
SNR2,- = E | Skk‘ Matched filter . qx = M—-
k=0

e Noise PSD S = E(|X|?) — Measure of spectral noise
variance

e White: All frequencies are present (Sx = Sp); gk o hk.
e Colored: Noise variance is a function of frequency.

Small S = small variance.

More SNR contribution with small Sy frequencies.
Demonstrates how noise distribution limits the sensitivity.

e Band-pass operation: Allows data to pass through a
frequency band given by the instrument (Sy).
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Matched filter SNR and Signal duration

M-1 ¢ 7
| k|2 _/m |h(f)[? T
= | 50 df  S(f) = 1755

Sinusiod signal h(t) = A cos(2 7 fo t) O<t<T

SNR variation with time ///////7 |h(f)|2 -~ A2 T2 df — T*‘I
s e | (A~ A2 T
3 Y ) ‘0 (md\l‘o 1‘2 1‘4//16 SNRMF x ﬁ
x s o \/# cycles
5 i I | AVT vs /S(f)




Matched filter SNR and Signal duration

| P2 > |h(f)]? T
SNRZ,. — :/_OO S SU) = 7S

Sinusiod signal h(t) = A cos(2 7 fo t) O<t<T

Noise PSD vs Signal -- T=0.984375seconds
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Frequency in Hz
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— |y ? > |h(f)[? T
SNRZ, — :/_OO S SU) = 7S

Sinusiod signal h(t) = A cos(2 7 fo t) O<t<T

Noise PSD vs Signal -- T=4.984375seconds
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" Noise: sqrt(sf)

Signal: h(f)*sqrt(BW)
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Matched filter SNR and Signal duration

| P2 > |h(f)]? T
SNRZ,. — :/_OO S SU) = 7S

Sinusiod signal h(t) = A cos(2 7 fo t) O<t<T

Noise PSD vs Signal -- T=6.984375seconds
0.25 T T T T T
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Sinusiod signal h(t) = A cos(2 r fo t) O<t<T

Noise PSD vs Signal - T=0.984375seconds
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Sinusiod signal h(t) = A cos(2 r fo t) O<t<T

Noise PSD vs Signal - T=2.984375seconds
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Sinusiod signal h(t) = A cos(2 r fo t) O<t<T

Noise PSD vs Signal - T=4.984375seconds
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Sinusiod signal h(t) = A cos(2 r fo t)

MNoise PSD vs Signal - T=6.984375seconds

O<t<T
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Matched filtering: Inspiral waveforms

Compact binaries with NS, BH
hy oc 2223 cos (27 [ f(1)dl)
h. o 223 sin(2r [ f(t)dt)
Chirp mass M = [;2M?]'/°
Freq. f oc M 5/8(typn — 1)73/8
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Matched filtering: Inspiral waveforms

Compact binaries with NS, BH
h, o« X223 cos(2r [ f(t)dt)
h. oc 223 sin(2r [ f(t)dt)
Chirp mass M = [;2M?]"/5
Freq. f oc M 5/8(typn — 1) 3/8

Interferometric data x(t) Filter bank Matched filter O/P
5 ' ' 5 . . .
— Data o
] e e
— GWave chirp
5
0 005 01 015 02
5 Best matched
E] filter
2 0
£
£ -5
s 0 0 005 01 015 02
> 5 e
s
3 0 L
Z
5 . . .
0 005 01 015 02
5
OE
5 - - 5
0 0.05 0.1 0.15 0.2 0.25 0 005 01 015 02

Time in seconds
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lllustration:

Pick 10 random digits between 0-9
S1-3462109826
S2-1458210372
S3-1234024783.

S98-3262107836
S99-1358110578
S100-0352123402
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S1-3462109826
S2-1458210372
S3-12340247883.

S98-3262107836
S99-1358110578
S100-0352123402

Prob (123 4)? == 7 in 10 thousand



-
Signal identification issues

lllustration:

Pick 10 random digits between 0-9
S1-3462109826
S2-1458210372
S3-1234024788.

S98-3262107836
S99-1358110578
S100-0352123402

2in 100 instead of 7 in 10000 — ??
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lllustration:

Pick 10 random digits between 0-9
S1-3462109826
S2-1458210372
S3-12340247883.

S98-3262107836
S99-1358110578
S100-0352123402
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Signal identification issues

lllustration:

Pick 10 random digits between 0-9
S1-3462109826
S2-1458210372
S3-12340247883.

S98-3262107836
S99-1358110578
S100-0352123402

Prob (1 0)? == 0.09
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Strategy —

e Decide which signals to look for? Which signal?
e Compute the false alarm probability

e Assess detection significanace by fixing the
threshold
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Signal identification issues

Strategy —

e Decide which signals to look for? Which signal?
e Compute the false alarm probability

e Assess detection significanace by fixing the
threshold

Searching multi-parameter signal increases the false
alarm rate
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Time-Frequency analysis
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