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Questions to address:
Is there any Gravity-Wave signal in the data?
What kind of source and its astrophysical parameters?
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Assume: GW signal is hidden in the noise

Take home lesson –

Best filter depends on signal shape

Phase matching is crucial for signal detection
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Assume: GW signal is hidden in the noise

Several Questions

GW signal – Known/Unknown shape?

Known signal
Pulsars – Pulsating Neutron Stars

Hester et al, 2003; CXC, HST, NASA
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Several Questions

GW signal – Known/Unknown shape?

Unknown/Unmodeled signal
Supernova event [DA IV]
Accreting systems [DA IV]



Important questions in GW data analysis

Assume: GW signal is hidden in the noise

Several Questions

GW signal – Known/Unknown shape?

Signal of known shape



Important questions in GW data analysis

Assume: GW signal is hidden in the noise

Several Questions

GW signal – Known/Unknown shape?

Signal of known shape

What is the best filter in presence of noise? [DA III]



Important questions in GW data analysis

Assume: GW signal is hidden in the noise

Several Questions

GW signal – Known/Unknown shape?

Signal of known shape

What is the best filter in presence of noise? [DA III]

Parameters affect the signal phase? One/Many ?
How filters should be spaced?
Phase mismatch between filter and signal? — [DA V]



Revise: Continuous and Discrete Fourier Transform



Revise: Continuous and Discrete Fourier Transform

Continuous Domain
Time series:

x(t) 0 < t < T

Discrete Domain
Sampled Data at fsamp = ∆−1,

xj = x(tj) tj = 0,∆, . . . , (N−1)∆



Revise: Continuous and Discrete Fourier Transform

Continuous Domain
Time series:

x(t) 0 < t < T

Discrete Domain
Sampled Data at fsamp = ∆−1,

xj = x(tj) tj = 0,∆, . . . , (N−1)∆.
FT: x̃(f ) =

∫∞
−∞ x(t)e−2πiftdt

.
DFT: x̃k =

∑N−1
0 xje−2πijk/N



Revise: Continuous and Discrete Fourier Transform

Continuous Domain
Time series:

x(t) 0 < t < T

Discrete Domain
Sampled Data at fsamp = ∆−1,

xj = x(tj) tj = 0,∆, . . . , (N−1)∆.
FT: x̃(f ) =

∫∞
−∞ x(t)e−2πiftdt

.
DFT: x̃k =

∑N−1
0 xje−2πijk/N

x̃(f ) = x̃(fk )⇒ ∆× x̃k fk = k/T



Revise: Continuous and Discrete Fourier Transform

Continuous Domain
Time series:

x(t) 0 < t < T

Discrete Domain
Sampled Data at fsamp = ∆−1,

xj = x(tj) tj = 0,∆, . . . , (N−1)∆.
FT: x̃(f ) =

∫∞
−∞ x(t)e−2πiftdt

.
DFT: x̃k =

∑N−1
0 xje−2πijk/N

x̃(f ) = x̃(fk )⇒ ∆× x̃k fk = k/T

IFT: x(t) =
∫∞
−∞ x̃(f )e2πiftdf DIFT: xj = 1

N

∑N−1
0 x̃je2πijk/N



Revise: Continuous and Discrete Fourier Transform

Continuous Domain
Time series:

x(t) 0 < t < T

Discrete Domain
Sampled Data at fsamp = ∆−1,

xj = x(tj) tj = 0,∆, . . . , (N−1)∆.
FT: x̃(f ) =

∫∞
−∞ x(t)e−2πiftdt

.
DFT: x̃k =

∑N−1
0 xje−2πijk/N

x̃(f ) = x̃(fk )⇒ ∆× x̃k fk = k/T

IFT: x(t) =
∫∞
−∞ x̃(f )e2πiftdf DIFT: xj = 1

N

∑N−1
0 x̃je2πijk/N

.
Parseval Theorem:∫

x2(t)dt =

∫
|x̃(f )|2df

.

N
N−1∑

0

yj zj =
N−1∑

0
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Continuous Domain
Time series:

x(t) 0 < t < T

Discrete Domain
Sampled Data at fsamp = ∆−1,

xj = x(tj) tj = 0,∆, . . . , (N−1)∆.
FT: x̃(f ) =

∫∞
−∞ x(t)e−2πiftdt

.
DFT: x̃k =

∑N−1
0 xje−2πijk/N

x̃(f ) = x̃(fk )⇒ ∆× x̃k fk = k/T

IFT: x(t) =
∫∞
−∞ x̃(f )e2πiftdf DIFT: xj = 1

N

∑N−1
0 x̃je2πijk/N

.
Convolution Y = X ⊗Q:

y(T ) =

∫
x(t) q(T − t)dt

.

yj =
N−1∑
l=0

xl qj−l
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Noise: White and Colored

What is the color of the noise?

White light == All colors in equal proportions
White noise == All frequencies in equal proportions

Frequency spectrum is flat

Noise Power Spectral
Density:

Sn(f ) =
< |ñ(f )|2 >

T

Application : Elctronic music, Audio testing etc
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What is the color of the noise?

What is the colored noise?

How to obtain blue color from white color??
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Noise: White and Colored

What is the color of the noise?

Colored noise - Pass white noise through a
band-pass filter

Example: Power law noise Noise power spectrum 1/f α

α = 0,1,2, . . .⇒ white, pink, brown, . . . noise
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Signal-To-Noise Ratio:

SNR =
< X ⊗Q >

σ(X ⊗Q)
=

H ⊗Q
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k=0 h̃k q̃∗k)2∑M−1
l=0 Sk |q̃k |2

Use: Stationary < ñk ñ′∗k >= Skδ(k , k ′)
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What is the best filter?

SNR2
max =

M−1∑
k=0

|h̃k |2

Sk
Matched filter : q̃k = M

h̃k

Sk

Y = X ⊗Q == yj =
M−1∑
k=0

x̃k
h̃∗k
Sk

e2πjk/M



Matched filter SNR

SNR2
MF =

M−1∑
k=0

|h̃k |2

Sk
Matched filter : q̃k = M

h̃k

Sk

Noise PSD Sk = E(|x̃k |2) — Measure of spectral noise
variance
White: All frequencies are present (Sk = S0); qk ∝ hk .
Colored: Noise variance is a function of frequency.

Small Sk ⇒ small variance.

More SNR contribution with small Sk frequencies.
Demonstrates how noise distribution limits the sensitivity.
Band-pass operation: Allows data to pass through a
frequency band given by the instrument (Sk ).
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SNR2
MF =

M−1∑
k=0

|h̃k |2

Sk
=

∫ ∞
−∞

|h̃(f )|2

S(f )
df S(f ) =

T
M2 Sk

Sinusiod signal h(t) = A cos(2 π fo t) 0 < t < T

|h(f )|2 ∼ A2 T 2 df = T−1

|h(f )|2df ∼ A2 T

SNRMF ∝
√

T
∝
√

# cycles

A
√

T vs
√

S(f )
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√
T



Matched filter SNR and Signal duration

Sinusiod signal h(t) = A cos(2 π fo t) 0 < t < T

Signal is coherent – h̃(f ) ∝ T
Noise is incoherent (random walk) – ñ(f ) ∝
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Illustration:
Pick 10 random digits between 0-9
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S3 – 1 2 3 4 0 2 4 7 8 3 .

.
S98 – 3 2 6 2 1 0 7 8 3 6
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S100 – 0 3 5 2 1 2 3 4 0 2

2 in 100 instead of 7 in 10000 – ??
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Signal identification issues

Illustration:
Pick 10 random digits between 0-9

S1 – 3 4 6 2 1 0 9 8 2 6
S2 – 1 4 5 8 2 1 0 3 7 2
S3 – 1 2 3 4 0 2 4 7 8 3 .

.
S98 – 3 2 6 2 1 0 7 8 3 6
S99 – 1 3 5 8 1 1 0 5 7 8
S100 – 0 3 5 2 1 2 3 4 0 2

Prob (1 0)? == 0.09
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Assess detection significanace by fixing the
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Signal identification issues

Strategy –

Decide which signals to look for? Which signal?
Compute the false alarm probability
Assess detection significanace by fixing the
threshold

Searching multi-parameter signal increases the false
alarm rate



Time-Frequency analysis


