

NOISE in GW detectors

- After ~ 40 years of effort, no one has detected a GW!
- Why? Noise levels in detectors exceed expected signal; *insufficient sensitivity*
- Want to detect GW strain *h*; can express detector noise in terms of equivalent *h* sensitivity
- Most of the effort in GW detection has gone into understanding and reducing noise to the fundamental quantum limit (and beyond!)
- We are the beneficiaries of that pioneering and frustrating work: on the threshold of doing what sounds almost impossibly hard!

NOISE SOURCES IN THE DETECTOR

- Noise \Rightarrow signals which appear in detector as GWs but are imposters
- Three categories:
- Displacement noise \Rightarrow moves mirrors (path length changes) $\delta x = L \delta h$, so to achieve $h \approx 10^{-21}/\sqrt{Hz}$ with L = 4km, $\Rightarrow \delta x \approx 10^{-18} m/\sqrt{Hz}$ (*cf*: diameter of proton is 10⁻¹⁵ m)
- Phase noise \Rightarrow changes the phase of the light: $\delta \phi = 4\pi \text{ NL } \delta h / \lambda$, with N≈100 and $\lambda \approx 1.064 \mu m$, $\Rightarrow \delta \phi \approx 10^{-10} rad/\sqrt{Hz}$
- Technical or instrumental noise (laser, electronics, EMF pickup, etc) must engineer IFO to keep this *below* the fundamental noise!

Sensing limits

Photon shot noise:

$$E_{APD} = P_{APD} \tau_{int} = N_{photon} (h_{Pl} c / \lambda)$$
$$\Rightarrow \delta P_{APD} = \sqrt{P_{APD} h_{Pl} c / \lambda \tau_{int}}$$

uncertainty in intensity due to counting statistics:

can solve for equivalent strain:

Note: scaling with $1/\sqrt{P_{laser}}$; gives requirement for laser power

Radiation Pressure

quantum limited intensity fluctuations anti-correlated in two arms photons exert a time varying force, spectral density results in opposite displacements of *each* of the masses; strain NOTE: scaling with $\sqrt{P_{laser}}$, scaling with the arm length

Total optical readout, or quantum noise:

quadrature sum $h_q = (h_{shot}^2 + h_{rp}^2)^{1/2}$; can be optimized

$$h_{shot} = \frac{\delta L}{L} = \frac{1}{L} \sqrt{\frac{h_{Pl} c \lambda}{2\pi T(f) P_{laser}}}$$

$$h_{rp} = \frac{\delta L}{L} = \frac{2}{L} \frac{1}{mf^2} \sqrt{\frac{h_{Pl}T(f)P_{laser}}{8\pi^3 c\lambda}}$$

Optical readout noise

Optical readout noise: $h_{ro}(f) = \sqrt{h_{shot}^2(f) + h_{rp}^2(f)}$

Optimize h_{ro} wrt P_{laser} at each point in f; Locus of points is the Standard Quantum Limit, Obtainable from Heisenberg Uncertainty

$$h_{SQL} = \frac{1}{\pi fL} \sqrt{\frac{\hbar}{m}}$$

Thermal displacement noise

Mechanical systems excited by the thermal environment

results in physical motions of the tests masses

$$x_{rms} = \sqrt{\left\langle \left(\delta x \right)^2 \right\rangle} = \sqrt{k_B T / k_{spring}}$$

Each normal mode of vibration has $k_B T$ of energy; for a SHO, An extended object has many normal modes at discrete frequencies;

each will experience thermal excitation.

Dissipation causes the energy, and fluctuations in position, to spread over a range of frequencies, according to Fluctuation-Dissipation theorem:

$$\tilde{x}(f) = \frac{1}{\pi f} \sqrt{\frac{k_B T}{\Re(Z(f))}}$$
, $\Re(Z)$ is the real (lossy) impedance

e.g., damping term in an oscillator: $m\ddot{x} = F_{ext} - \Re(Z)\dot{x} - k_{spring}x$ •viscous damping: $\Re(Z) = b$ = constant. Recall, at a definite f, $\dot{x} = i2\pi f x$

•internal friction:

$$\phi(f)$$
 is often a constant, = 1/0
 $F = -kx \implies F = -k(1 + i\phi(f))x$

Minimize thermal motion \Rightarrow materials and techniques for very low loss (high Q)

Thermal displacement noise

Suspension thermal noise

Suspension wires vibrate (violin modes, stretch/bounce modes), kick the test mass around, introducing a harmonic series of noise lines

Test mass internal thermal noise

Vibrational modes of test masses

This is for beam splitter. Test masses have no resonances below ~8KHz (?).

Noise from imperfect Optics

Highly efficient optical system:

- ~50 ppm lost per round-trip
- optics are 25 cm diameter, 10 cm thick fused silica cylinders
- light beam ~10 cm diameter; 1ppm scattered, ~1ppm absorbed

Constraints on optical surface due to noise requirements:

- minimize scatter (power loss \Rightarrow phase noise)
- minimize absorption (thermal distortions, lensing \Rightarrow phase noise)
- minimize scattering out of beam, onto tube, back into beam (phase noise)
- minimize wavefront distortions (*contrast defect* at dark por<u> $t \Rightarrow$ phase noise</u>)

Results

• λ/800 over central 10 cm (~1 nm rms); fine scale `superpolish'

•Sophisticated baffling

Residual gas in beam tube

Light must travel 4 km without attenuation or degradation

- refractive index fluctuations in gas cause variations in optical path, phase noise
- residual gas scatters light out of, then back into, beam; phase noise
- Residual gas pressure fluctuations buffet mirror; displacement noise
- Contamination: low-loss optics can not tolerate surface 'dirt'; High circulating powers of ~10-50 kW burns dirt onto optic surface

requirement for vacuum in 4 km tubes:

- H_2 at 10⁻⁶ torr initial, 10⁻⁹ torr ultimate
- H_2O at 10⁻⁷ torr initial, 10⁻¹⁰ ultimate
- Hydro-, flourocarbons < 10⁻¹⁰ torr
- vacuum system, 1.22 m diameter, ~10,000 m³
- strict control on in-vacuum components, cleaning

Seismic displacement noise

Motion of the earth

- •driven by wind, volcanic/seismic activity, ocean tides, humans
- •requires e.g., roughly 10^9 attenuation at 100 Hz
- •~300 micron tidal motion, microseismic peak at 0.16 Hz.
- At low frequencies, motion is correlated over two mirrors

Approaches to limiting seismic noise

•careful site selection

far from ocean, significant human activity, seismic activityactive control systems (only microseismic peak for now)

•seismometers, regression, feedback to test masses

- •simple damped harmonic oscillators in series
- `stacks', constrained layer springs and SS massesone or more low-loss pendulums for final suspension

• gives $1/f^2$ for each pendulum

Seismic Isolation Systems

Support Tube Installation

Stack Installation

Coarse Actuation System

Suspended test masses

- To respond to the GW, test masses must be "free falling"
- On Earth, test masses must be supported against DC gravity field
- The Earth, and the lab, is vibrating like mad at low frequencies (seismic, thermal, acoustic, electrical);
 - •can't simply bolt the masses to the table (as in typical ifo's in physics labs)
- So, IFO is insensitive to low frequency GW's
- Test masses are suspended on a pendulum resting on a seismic isolation stack
 - "fixed" against gravity at low frequencies, but"free" to move at frequencies above ~ 100 Hz

"Free" mass: pendulum at $f >> f_0$

Seismic Isolation

The Target: Relative distance between mirrors

Degrees of freedom	
Pendular motion	2
Pitch and Yaw motion	2
Torsional motion	1
Vertical motion	1

Seismic isolation stacks

LIGO Vacuum Chambers

BSC Chambers

Seismic Isolation Systems

Support Tube Installation

Stack Installation

Coarse Actuation System

Fig. 1.10: The schematic of the entire AIGO vibration isolator chain showing the main components of the pre-isolator stages, the three Euler vertical stages, the four pendulum stages, and the test mass stage.

Figure 4: Cut view of the setup for the experimental tests. A: stressed blade, B: link wire, C: load disk, D: angular movement of the blade base, E: radial movement of the blade base. E: anti-tilt tower, G: anti-tilt centering wires, H: suspension wire (or rod), I: load.

Figure 2: Vertical resonant frequency versus payload vertical position (y in fig.1). Each curve corresponds to a different x coordinate as defined fig.1. The scatter of some points is due to numerical precision errors. The effect of these errors is more visible at low frequencies, where spring and anti-spring add up to a smaller number.

Fig. 1.9: Transfer functions of resonant frequency of 1 Hz showing the center of percussion effect.

Fig. 1.8: Diagram of a simple pendulum illustrating the concept of the center of percussion effect. The transfer function isolation floor depends on the position of measurement point A.

Euler Springs

Fig. 3.8: Diagram of the Euler system consisting of two pairs of Euler springs and an inverse pendulum of height h in the rotational arms [49].

Active control of SEI system

Two active stages: cages, masses, springs, S/A pairs. All DOF under active control.

GEO multiple pendulum design

• 3 or 4 pendulum stages; each provides $1/f^2$ filtering for $f > f_0$ • Top stage has 6 OSEMs for 6-dof control ("marionetta"), relative to support cage.

• Normal modes of the multiple pendulum (~24) must not have nodes at the top, so they can be controlled from the top.

• Blade springs at the very top provide tuned vertical isolation.

• Lower stages must control w.r.t. stage above it; so the actuators must push against a "reaction mass" which is as quiet as the stage above it

• lowest stage (test mass optic) is attached to stage above it with fused silica fibers.

LIGO II Active seismic isolation and multiple pendulum suspension

- Must support LIGO test mass optic at the beamline.
- Must fit inside existing vacuum chambers, and be fully vacuum compatible.
- Must provide full control system.
- Must satisfy specs:

Optics Payload, (Chamber type)	Optic Axis (X-direction)				Y & Z directions		Pitch, Yaw
	Freq. (Hz)	Noise (m/√Hz)	Motion (m rms)	Velocity (m/s)	Noise (m/√Hz)	Motion (m rms)	<i>Motion</i> (rad rms)
ITM, ETM, BS, FM (BSC)	10	10 ⁻¹⁹	10 ⁻¹⁴	10 ⁻⁹	10 ⁻¹⁶	10 ⁻¹¹	10-96
RM, SRM (HAM)	10	10 ⁻¹⁷	10 ⁻¹³	10-8	10-14	10-10	10 ^{-<u>9</u>6}
MC (HAM)	10	3x10 ⁻¹⁸	10 ⁻¹²	10-7	3x10 ⁻¹⁵	10 ⁻⁹	10 ⁻²⁶
Ancillary Optics (HAM, BSC)	10						

Mirror control

- Seismic isolation system, and pendulum, keep the mirror motion to a minimum.
- Now the mirrors are not being kicked around by the environment (at high frequencies) – "free" masses!
- But, being free, they may not be where you need them to be to keep the laser resonant in the cavities.
- Instead, they're swinging back and forth at the pendulum frequency (~ 0.8 Hz).
- Need active control system to keep mirrors at set points (at/near DC), to keep F-P cavities resonant, without injecting noise at high frequencies
- ⇒ Carefully designed feedback servo loops

LSC Signal

Suspension control system

- Each suspension controller handles one suspension (5 OSEMs)
- Local velocity damping

Damping Signal

• Input from LSC and ASC to fix absolute position, pitch, yaw of mirror to keep cavity in resonance

 Z_2

Z₁

Mon

 Z_3

Magnet

Coil

Ė

Test Mass

Digital suspension controls

Ideas

Cascaded Pendulums Long period pendulums Inverted pendulums Anti Springs

Self Damped Pendulums Active damping Damping in specific bands Adaptive seismic feed-forward Sensors : Shadow sensors, capacitive sensors, PDH length signal Actuators: Voice coils, capacitive forces Controls: Digital filters with analog signal conditioners

High Q suspension wires and Optics Actuation from a suspended reaction mass

Cavity control

Pound-Drever (reflection) locking used to control lengths of all the optical cavities in LIGO

- Phase modulate incoming laser light, producing RF sidebands
- Carrier is resonant in cavity, sidebands are not
- Beats between carrier and sidebands provide error signal for cavity length

LIGO Optics mirrors, coating and polishing

- SUPERmirrors:
 - » High uniformity fused silica quartz
 - » reflectivity as high as 99.999%
 - » losses < 1 ppm in coating, 10 ppm in substrate</p>
 - » polished with mircoroughness < $\lambda/1800 \approx 0.5$ nm
 - » and ROC within spec.
 - ≈ $(\delta R/R < 5\%, \text{ except for BS})$
- Suspensions: hang 10kg optic by a single loop of wire, and hold it steady with feedback system

LIGO II Optics

Thermal compensation (de-lensing) methods

• Beam heating at center of optic distorts the optic due to thermal expansion, changing ROC, index of refraction, etc.

• Compensate by heating the optic from the circumference in, to give uniform and constant-intime thermal loading as the IFO is operated.

Advanced LIGO incremental improvements

- Reduce shot noise: higher power CW-laser: 12 watts ⇒120 watts
- Reduce shot noise: Advanced optical configuration: signal recycling mirror (7th suspended optic) to tune shot-noise response in frequency
- To handle thermal distortions due to beam heating: advanced mirror materials, coatings, thermal de-lensing compensation (heating mirror at edges)
- Reduce seismic noise: Active seismic isolation.
 Seismic wall moved from 40 Hz ⇒ ~ 10 Hz.
- Reduce seismic and suspension noise: Multiple pendulum suspensions to filter environmental noise in stages.
- Reduce suspension noise: Fused silica fibers, silica welds.
- Reduce test mass thermal noise: Last pendulum stage (test mass) is controlled via photonic and/or electrostatic forces (no magnets).
- Reduce test mass thermal noise: High-Q material (40 kg of single-crystal sapphire).

Advanced LIGO R&D

- Development of multiple pendulum suspensions with silica fibers
 - » Willems et al
- Development of advanced seismic isolation and suspension systems
 - » de Salvo et al
- Advanced interferometer techniques, detection of gravity at DC
 - » Drever et al
- Simulations of complex interferometer behavior
 - » Yamamoto et al
- Quantum-nondemolition optical techniques to reduce quantum readout noise
 - » Whitcomb et al

Signal recycling mirror to optimize sensitivity

- The signal mirror is NOT used to store the laser light; all it sees is light generated by the GW signal.
- The signal recycling cavity allows one to tune the response of the IFO to the signal, as a function of its frequency, independently of the light storage in the arms (the "reservoir" of light available to be converted into signal light.

• The frequency response of the IFO can be tuned to put the sensitivity where it is most needed (at high frequencies).

• Net result:

- \succ 2× sensitivity for CBI;
- \blacktriangleright or ~ 10 × in event rate.

