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felt through its tidal forces 
Gravitational waves are 
traveling, time-dependent 
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Tidal forces scale with size, 
typically produce elliptical 
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falls off as 1/r3

Gravitational waves also 
cause a tidal effect the only 
difference is that the effect 
falls off as 1/r
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GW Luminosity  L = (Asymmetry factor) v10 

A strong function of velocity:  During merger, a binary 
black hole in gravitational waves outshines the entire 
Universe in light

GW Amplitude of a source of size r at a distance R 

h = (Asymmetry factor) (M/R) (M/r)

Amplitude gives strain in space h = !L/L 

GW frequency is the dynamical frequency f ~ "#

For binaries dominant the gravitational-wave frequency is 
twice the orbital frequency

GW Polarization

In Einstein’s theory two polarizations - plus and cross
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transitions in atoms and 
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physics of small things

Incoherent 
superposition of many, 
many waves

Detectors sensitive to 
the intensity of 
radiation 

Directional telescopes

Production: coherent 
motion stellar and super-
massive black holes, 
supernovae, big bang, …

Often, a single coherent 
wave, but stochastic 
background expected

GW detectors are 
sensitive to the amplitude 
of the radiation

Sensitive to wide areas 
over the sky
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In 1974 Hulse and Taylor observed the 
first binary pulsar 

Two neutron stars in relativistic orbit
Masses, each ~ 1.4 M

!

Period ~ 7.5 Hrs 
Eccentricity ~ 0.62

Einstein’s theory predicts the binary 
should emit gravitational radiation 

The stars spiral in toward each other, 
causing a decrease in the period

Observed decrease in period - about 10 
micro seconds per year - is in 
agreement with Einstein’s theory to 
fraction of a percent
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Eventually the two stars will 
coalesce, but that will take 
another 100 million years
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bursts

Black hole collisions
Supernovae
gamma-ray bursts (GRBs)

Short-hard GRBs 
could be the result of 
merger of a neutron star 
with another NS or a BH

Long-hard GRBs 
could be triggered by 
supernovae
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Continuous Wave Sources

Rapidly spinning neutron stars 
or other objects

Mountains on neutron stars

Low mass X-ray binaries
Accretion induced 
asymmetry

Magnetars and other compact 
objects

Magnetic field induced 
asymmetries

Relativistic instabilities
r-modes, etc.
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Examples of Merging Neutron Star 
Binaries

PSR 1913+16, J0737-3039

J0737-3039 - the fastest 
Strongly relativistic, P

b
=2.5 Hrs

Mildly eccentric, e=0.088

Highly inclined (i > 87 deg)

The most relativistic 
Greatest periastron advance: 
d!/dt: 16.8 degrees per year 
(almost entirely general 
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perihelion advance of 42 sec 
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PSR 1913+16, J0737-3039

J0737-3039 - the fastest 
Strongly relativistic, P

b
=2.5 Hrs

Mildly eccentric, e=0.088

Highly inclined (i > 87 deg)

The most relativistic 
Greatest periastron advance: 
d!/dt: 16.8 degrees per year 
(almost entirely general 
relativistic effect), compared to 
relativistic part of  Mercury’s  
perihelion advance of 42 sec 
per century

Orbit is shrinking by a few 
millimeters each year due to 
gravitational radiation reaction

Burgay et al Nature 2003
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Structure of the waveform

These amplitude corrections have a lot of additional 
structure 

Increased mass reach of detectors

Greatly improved parameter estimation accuracies

Blanchet, Damour, Iyer, Jaranowski, Schaefer, Will, Wiseman

Andrade,  Arun, Buonanno, Gopakumar, Joguet, Esposito-Farase,Faye, Kidder, 
Nissanke, Ohashi, Owen, Ponsot, Qusaillah, Tagoshi …
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Edge-on vs face-on binaries 

McKechan et al (2009)
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Black Hole Mergers from 
Numerical Relativity

After several decades NR is now able to compute 
accurate waveforms for use in extracting signals and 
science

New physics - e.g. super-kick velocities

Analytical understanding of merger dynamics

We should be able to see further and more massive 
objects

A Big Industry: Golm, Jena (Germany), Maryland, Princeton, Rochester, Baton 

Rouge, Georgia Tech, Caltech, Cornell (USA), Canada, Mexico, Spain, Cardiff
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Caltech/Cornell Computer SimulationTop: 3D view of orbit of black holes

Middle: Depth - Curvature of Spacetime

Colors: Rate of flow of time

Arrows: Velocity of flow of space

Bottom: Waveform; red line shows current time
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Effective-One-Body Formalism for Inspiral-
Merger-Ringdown Dynamics

[Damour & Nagar (2009)]
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IMR/EOBNRPN templates 
Ring-down

Initial LIGO                   Virgo design              Advanced LIGO

EOB w/o ring-down

700 Mpc z=1.81 Gpc

Ajith et al

How further can we see with 
Inspiral, Merger and Ringdown?
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Comparison of Inspiral and Inspiral-
Merger-Ringdown waveforms: Distance 

Reach (left) Parameter Estimation (right)
[Ajith & Bose (2009)]

10 Msun

100 Msun

dL = 1 GpcSNR = 8 in Adv LIGO
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Unveiling progenitors of short-hard GRBs
Short-hard GRBs believed to be merging NS-NS and NS-BH

Understanding Supernovae
Astrophysics of gravitational collapse and supernova?

Evolutionary paths of compact binaries

Finding why pulsars glitch and magnetars flare
What causes sudden excursions in pulsar spin frequencies

What is behind ultra high-energy transients in magnetars

Ellipticity of neutron stars
Mountains of what size can be supported on neutron stars?

NS spin frequencies in LMXBs
Why are spin frequencies of neutron stars in low-mass X-ray 
binaries bounded, CFS instability and r-modes
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Expected Annual Coalescence Rates

Graaaaaaavvvvvvviiiiitttttyyyyyyyy sssss SSSSStttttaaaaannnnndddddaaaaarrrrrddddd SSSSSiiiiirrrrreeeeennnnnsssss 

BNS NS-BH BBH

Initial LIGO
(2002-06)

0.02 0.006 0.01

Adv. LIGO 
(2014+)

40 10 20

ET Millions 100,000 Millions

Rates are mean of the distribution; in a 95% confidence 
interval, rates uncertain by 3 orders of magnitude
Rates are for Binary Neutron Stars (BNS) Binary Black 
Boles (BBH) and Neutron Star-Black Hole binaries 
(NS-BH) 
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rays: 
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since the Big Bang

X-ray, UV and optical 
afterglows

Bimodal distribution of 
durations

Short GRBs
Duration: T90 < 2 s

Mean redshift of 0.5

Long GRBs
Duration T90 > 2 s

Higher z, track Star Form. Rate.

Nicolle Rager Fuller/NSF
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Long GRBs
Core-collapse SNe, GW 
emission not well 
understood

Could emit burst of GW

Short GRBs
Could be the end state of 
the evolution of compact 
binaries

BNS, NS-BH

GRBs - The 
Long and Short 

of it
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LSC searched for binary inspirals 
and did not find any events: 
results in ApJ 681 1419 2008

Null inspiral search result 
excludes binary progenitor in 
M31

Soft Gamma-ray Repeater (SGR) 
models predict energy release  

<= 1046 ergs.

LIGO has helped to confirm the 
first ever extragalactic SGR 

LSC, Astrophys. J. 681, (2008) 1419
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Search for GRBs during all of S5
Nov 2005 - Oct 2007: 212 GRBs

LSC-Virgo searched for 137 GRBs with 2 or more LIGO-Virgo 

detectors:  ~25% with redshift, ~10% short duration: Null result

Polarization-averaged antenna response of LIGO-Hanford, dots 
show location of GRBs during S5-VSR1
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Some Interesting Upper Limits

Pulsar start – end (MJD) ν (Hz) ν̇ (Hz s−1) distance (kpc) spin-down limit joint h95%
0 ellipticity h95%

0 /hsd
0

53702 – 54522 168.10 −3.1× 10 1.4 7.93× 10 7.49× 10 8.65× 10 94

53410 – 54520 221.80 −6.1× 10
−16†

1.3 1.04× 10
−27

7.57× 10
−26

4.65× 10
−7

73

53410 – 54510 202.79 −5.1× 10
−16†

0.2 5.13× 10
−27

4.85× 10
−26

6.96× 10
−8

9.4

53687 – 54388 268.36 −2.0× 10
−15†

2.5 8.71× 10
−28

6.12× 10
−26

5.13× 10
−7

70

26
6.96× 10

−826
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McCulloch et al, Aust. J. Phys. 1987
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NS Normal Mode Oscillations
Sudden jolt due to a glitch, and superfluid vortex unpinning, 
could cause oscillations of the core, emitting gravitational waves

These normal mode oscillations have characteristic frequencies and 
damping times that depend on the equation-of-state

Detecting and measuring normal modes could reveal the 
equation-of-state of neutron stars and their internal structure
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Accreting Neutron Stars

Spin frequencies of 
accreting NS seems to be 
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Well below the break-up 
speed

What could be the reason 
for this stall?

Balance of accretion torque 
with GW back reaction torque
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Accreting Neutron Stars

G it ' St d d Si

Spin frequencies of 
accreting NS seems to be 
stalled below 700 Hz

Well below the break-up 
speed

What could be the reason 
for this stall?

Balance of accretion torque 
with GW back reaction torque

Could be explained if 
ellipticity is ~ 10-8

Could be induced by 
mountains or relativistic 
instabilities, e.g. r-modes
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Cosmography
H0, dark matter and dark energy densities, dark energy EoS w

Black hole seeds
Black hole seeds and their hierarchical growth 

Anisotropic cosmologies
In an anisotropic Universe the distribution of H on the sky 
could show residual quadrupole and higher-order 
anisotropies

Primordial gravitational waves
Quantum fluctuations in the early Universe, stochastic BG

Production of GW during early Universe phase 
transitions

Phase transitions, pre-heating, re-heating, etc.
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Stochastic Backgrounds

Primordial background
Quantum fluctuations produce a background GW that 
is amplified by the background gravitational field

Phase transitions in the Early Universe
Cosmic strings - kinks can form and “break” producing 
a burst of gravitational waves

Astrophysical background
A population of Galactic white-dwarf binaries produces 
a background above instrumental noise in LISA
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Upper limit from LIGO data 
from the 4th Science run

∫
df
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1

ρcrit

dρgw

d ln f

the S4 run of LIGO Livingston and LIGO Hanford [107], which set the 90%
confidence level upper limit of Ωgw(f) < 6.5 × 10−5 assuming

150 Hz. This is less stringent than theLSC,  Astrophys. J. 659 (2007) 918
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LETTERS

An upper limit on the stochastic gravitational-wave
background of cosmological origin
The LIGO Scientific Collaboration* & The Virgo Collaboration*

Vol 460 |20 August 2009 |doi:10.1038/nature08278
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Cosmological parameters

Luminosity distance Vs. red shift depends on a 
number of cosmological parameters H0, !M, !b, !", 

w, etc.
Einstein Telescope will detect 1000’s of compact 
binary mergers for which the source can be 
identified (e.g. GRB) and red-shift measured.
A fit to such observations can determine the 
cosmological parameters to better than a few 
percent.
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Compact Binaries are Standard Sirens

Amplitude of gravitational waves depends on
Chirp-mass=µ3/5M2/5

Gravitational wave observations can measure both 
Amplitude (this is the strain caused in our detector) 
Chirp-mass (because the chirp rate depends on the chirp mass)

Therefore, binary black hole inspirals are standard sirens
From the apparent luminosity (the strain) we can conclude the 
luminosity distance

However, GW observations alone cannot determine the 
red-shift to a source
Joint gravitational-wave and optical observations can 
facilitate a new cosmological tool

Schutz 86
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Hierarchical Growth of Black Holes  
in Galactic Nuclei

avity's SStanndddardd SSSiiirreennss 

Initially small black holes may grow by hierarchical merger

S
ET could observe seed black holes if they are of order 1000 solar mass
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Models of Black Hole Seeds 
and Their Evolution

andard SSSSSiiiiirrrrens 

Class. Quantum Grav. 26 (2009) 094027 K G Arun et al
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Properties of gravitational waves
Test wave generation formula beyond quadrupole approx.

Number of GW polarizations?

Do gravitational waves travel at the speed of light?

Equation-of-State of dark energy
GW from inspiralling binaries are standard sirens

Equation-of-State of supra-nuclear matter
Signature NS of EoS in GW from binary neutron star 
mergers

Black hole no-hair theorem and cosmic censorship
Are black hole candidates black holes of general relativity?

Merger dynamics of spinning black hole binaries
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Black hole quasi-normal modes
Damped sinusoids with characteristic frequencies 
and decay times

In general relativity frequencies flmn and decay times tlmn all 
depend only on the mass M and spin q of the black hole

Measuring two or modes unambiguously, would 
severely constrain general relativity

If modes depend on other parameters (e.g., the structure 
of the central object), then test of the consistency 
between different mode frequencies and damping times 
would fail
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Tests with QNM

Studying QNM from NR simulations at various mass ratios: 1:1, 
1:2, 1:4, 1:8, final spins from -0.8 to +0.8

It is not too difficult to generate the QNM only part of the merger signal

Can carry out a wide exploration of the parameter space 

What is the relative energy in the various ringdown modes?
Are there at least two modes containing enough energy so that their 
damping times and frequencies can be measured with good (i.e. at least 
10% accuracy)?

33 seems to contain contain enough energy compared to 22 modes; 
should be possible to extract the total mass and spin magnitude

Measuring the relative amplitudes of the different modes can shed light 
on the binary progenitor, namely the total mass and its mass ratio

Polarization of ringdown modes can measure the spin axis of merged BH

Kamaretsos, Hannam, Husa, Sathyaprakash, 2010
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Emitted energy and relative amplitudes 
of different quasi-normal modes

q j 
% total 

energy 
A21/A22 A33/A22 A44/A22 

1 0.69 4.9 0.04 0.10 0.05 

2 0.62 3.8 0.05 0.13 0.06 

3 0.54 2.8 0.07 0.21 0.08 

4 0.47 2.2 0.08 0.25 0.09 

11 0.25 0.7 0.14 0.31 0.14 

0.00

Table 1: For different mass ratios (q=1, 2, 3, 4, 11), we show the 

final spin of the black hole, percent of energy in the radiation, 

amplitude of (2,1), (3,3), (4,4) modes relative to (2,2) mode. 

Kamaretsos, Hannam, Husa, Sathyaprakash, 2010
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LISA measurement accuracies of mode frequencies
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LISA measurement accuracies damping times
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Black hole no hair theorems don’t apply to 
deformed black holes

From the ringdown signals it should in principle 
be possible to infer the nature of the perturber

In the case of binary mergers it should be 
possible to measure the masses and spins of 
the component stars that resulted in the final 
black hole

Black Holes Ain’t Got No Hair 
But They Do Grin
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Was Einstein right?
Is the nature of gravitational radiation as predicted by Einstein?

Are black holes in nature black holes of GR?

Are there naked singularities?

Unsolved problems in astrophysics
What is the origin of gamma ray bursts?

What is the structure of neutron stars and other compact objects?

Cosmology
Measurement of Hubble parameter, dark matter density, etc.

Demography of massive black holes at galactic nuclei?

Phase transitions in the early Universe?

Fundamental questions
What were the physical conditions at the big bang?

What is dark energy?
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