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wave equations in the metric perturbation:

ia .
(_aﬁ + v2) ht = —167T*".

& Here hog = has — 3105m"" Iy is the trace-reverse tensor.
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Tidal Gravitational Forces of GW

Acceleration of the Moon's gravity on Earth.
Length of arrow indicates size of acceleration.
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L Acceleration of the Moon's gravity on Earth.
> Grawtatlonal effect Of a Length of arrow indicates size of acceleration.

distant source can only be
felt through its tidal forces

-» Gravitational waves are -
traveling, time-dependent
tidal forces. :

-® Tidal forces scale with size, The acceleration at theenter)s the mean
typically produce elliptical O bt of sy Sk M o
deformations. larger near the Moon and smaller turther awav.

& With distance, tidal effect , , | |
falls off as |/r3 N e T e S e,

-» Gravitational waves also o
cause a tidal effect the only Earth
difference is that the effect
falls off as I/r
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- GW Luminosity .L = (Asymmetry factor) v!°

-2 A strong function of velocity: During merger, a binary
black hole in gravitational waves outshines the entire
Universe in light

-2 GW Amplitude of a source of size r at a distance R
h = (Asymmetry factor) (M/R) (M/r)
- Amplitude gives strain in space h = AL/L
-+ GW frequency is the dynamical frequency f~ +/p

- For binaries dominant the gravitational-wave frequency is
twice the orbital frequency

-2 GW Polarization
-2 In Einstein’s theory two polarizations - plus and cross
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EM Vs Gravitational Waves

-2 Production: electronic

transitions in atoms and

accelerated charges —
physics of small things

‘2 Incoherent
superposition of many,
many waves

-2 Detectors sensitive to
the intensity of
radiation

-2 Directional telescopes

-2 Production: coherent

motion stellar and super-
massive black holes,
supernovae, big bang, ...

-2 Often, a single coherent

wave, but stochastic
background expected

2= GW detectors are

sensitive to the amplitude
of the radiation

-2 Sensitive to wide areas

over the sky
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A persistent source of GW
PSR |913+16

2 In 1974 Hulse and Taylor observed the
first binary pulsar

2 Two neutron stars in relativistic orbit
-» Masses, each ~ | .4 M@ (

2 Period ~ 7.5 Hrs
-» Eccentricity ~ 0.62

-2 Einstein’s theory predicts the binary (
should emit gravitational radiation

2~ The stars spiral in toward each other,
causing a decrease in the period

‘2* Observed decrease in period - about 10
micro seconds per year - is in
agreement with Einstein’s theory to
fraction of a percent
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Burst Sources

-2 Gravitational wave
bursts
2 Black hole collisions

‘® Supernovae
‘¢ gamma-ray bursts (GRBs)

-2 Short-hard GRBs

2 could be the result of
merger of a neutron star
with another NS or a BH

-2 Long-hard GRBs

- could be triggered by
supernovae
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Continuous Wave Sources

> Rapidly spinning neutron stars
or other objects

* Mountains on neutron stars
‘®* Low mass X-ray binaries

2 Accretion induced
asymmetry

‘> Magnetars and other compact
objects

-» Magnetic field induced
asymmetries

2 Relativistic instabilities
‘2 r-modes, etc.
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Examples of Merging Neutron Star
Binaries

Burgay et al Nature 2003
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Examples of Merging Neutron Star
Binaries

Burgay et al Nature 2003
2= PSR 1913+16,)0737-3039 -

-2 J0737-3039 - the fastest
- Strongly relativistic, P,=2.5 Hrs
> Mildly eccentric, e=0.088
- Highly inclined (i > 87 deg)

2 The most relativistic

> Greatest periastron advance:
dw/dt: 16.8 degrees per year
(almost entirely general
relativistic effect), compared to
relativistic part of Mercury’s
perihelion advance of 42 sec
per century

> Orbit is shrinking by a few Nase A (Vy,.)

millimeters each year due to
gravitational radiation reaction

Mass B (Mg )
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Structure of the waveform

-2~ Radiation is emitted not just at twice the orbital
frequency but at all other harmonics too

M~ -
DLII Z Z A(k.n/2) €OS [A.\Il(l) } (,‘)(,‘..,,,,2)] r27(t)

k=1 n=()

)
hit) = -

& These amplitude corrections have a lot of additional
structure
-2 Increased mass reach of detectors
-2 Greatly improved parameter estimation accuracies

«®-Blanchet, Damour, lyer, Jaranowski, Schaefer, Will, Wiseman

"E"Andrade, Arun, Buonanno, Gopakumar, Joguet, Esposito-Farase,Faye, Kidder,
Nissanke, Ohashi, Owen, Ponsot, Qusaillah, Tagoshi ...
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McKechan et al (2009)

Edge-on vs face-on binaries

Time domain rep of the optimal template (LIGOI) — Full
(2. 10) Msun (2. 15) Msun (2. 30) Msun | Ragy

| A ] — Diff
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Pol angle=0, xy-scale same for a given system
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McKechan et al (2009)

All sources at 100 Mpc i=45 deg
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McKechan et al (2009)

All sources at 100 Mpc i=45 deg
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Black Hole Mergers from
Numerical Relativity

-2 After several decades NR is now able to compute
accurate waveforms for use in extracting signals and
science
-2 New physics - e.g. super-kick velocities
-2~ Analytical understanding of merger dynamics

2 We should be able to see further and more massive
objects

A Big Industry: Golm, Jena (Germany), Maryland, Princeton, Rochester, Baton
Rouge, Georgia Tech, Caltech, Cornell (USA), Canada, Mexico, Spain, Cardiff
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Top: 3D view of orbit of black holes Caltech/Cornell Computer Simulation
Middle: Depth - Curvature of Spacetime

Colors: Rate of flow of time
Arrows: Velocity of flow of space
Bottom: Waveform; red line shows current time

- T e —
LSS =
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Caltech/Cornell Computer Simulation
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‘Manuela Campanlli
Carlos Lousto
Yosef Zlochower

Visualization:. ;
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How further can we see with
Inspiral, Merger and Ringdown!

Initial LIGO Virgo design Advanced LIGO
700 Mpc | G%-~ z=1.8 —__
Sl T : |

——

PN templates IMR/EOBNR

EOB w/o ring-down gt

Ajith et al
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Comparison of Inspiral and Inspiral-
Merger-Ringdown waveforms: Distance
Reach (left) Parameter Estimation (right)

[Ajith & Bose (2009)]

SNR = 8 in Adv LIGO g gd=16pC |
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T 4000 : 1 100 Msun
—— IMR
— PN Inspiral 0.5
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Astrophysics

-2 Unveiling progenitors of short-hard GRBs
® Short-hard GRBs believed to be merging NS-NS and NS-BH

-2 Understanding Supernovae
- Astrophysics of gravitational collapse and supernova!

-2 Evolutionary paths of compact binaries

-2 Finding why pulsars glitch and magnetars flare
® What causes sudden excursions in pulsar spin frequencies

® What is behind ultra high-energy transients in magnetars
-2 Ellipticity of neutron stars
® Mountains of what size can be supported on neutron stars?

-2 NS spin frequencies in LMXBs

‘® Why are spin frequencies of neutron stars in low-mass X-ray
binaries bounded, CFS instability and r-modes
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Expected Annual Coalescence Rates

-2 Rates are mean of the distribution; in a 95% confidence
interval, rates uncertain by 3 orders of magnitude

-2 Rates are for Binary Neutron Stars (BNS) Binary Black
Boles (BBH) and Neutron Star-Black Hole binaries

(NS-BH)
BNS NS-BH BBH
Initial LIGO | 0902 | 0.006 | 0.01
(2002-06)
Adv. LIGO 40 10 20
(2014+)
ET Millions | 100,000 [ Millions
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GRB Progenitors
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-2 Intense flashes of gamma- ‘ “ﬁf

rays:

GRB Progenitors

120 Nakar, Physics
Reports 442 (2007)
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GRB Progenitors

- Intense flashes of gamma- ‘ Eyﬁ

rays: AL

-2 Most luminous EM source
since the Big Bang

N[[efe]][2] Raggr Fuller/NSF

120 Nakar, Physics
Reports 442 (2007)
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GRB Progenitors

‘2 Intense flashes of gamma-
rays:
-2 Most luminous EM source
since the Big Bang
-2 X-ray, UV and optical
afterglows

N[[efe]][2] Raggr Fuller/NSF

120 Nakar, Physics
Reports 442 (2007)

=
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GRB Progenitors

‘2 Intense flashes of gamma-
rays:
-2 Most luminous EM source
since the Big Bang
-2 X-ray, UV and optical
afterglows

-2 Bimodal distribution of || Vool RaghiFulers
1 Nakar, Physi
durations 1201 poports 442 (2007)
100/ 166-236

=
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GRB Progenitors

‘2 Intense flashes of gamma-
rays:
‘& Most luminous EM source
since the Big Bang

-2 X-ray, UV and optical

afterglows
. . g g : L
-2 Bimodal distribution of .
1 Nakar, Physi
durations e R:p?)rrts 45?;007)
& Short GRBs 00| 166250
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GRB Progenitors
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rays:
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-2 Bimodal distribution of || Vool RaghiFulers
1 Nakar, Physi
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GRB Progenitors

‘2 Intense flashes of gamma-
rays:
‘& Most luminous EM source
since the Big Bang

-2 X-ray, UV and optical

afterglows
-2 Bimodal distribution of || Vool RaghiFulers
1 Nakar, Physi
durations 120| peports 442 (2007)
% Short GRBs ooy 196558
*  Duration:Too < 2 s 80

‘2 Mean redshift of 0.5

=
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GRB Progenitors

‘2 Intense flashes of gamma-
rays:
‘& Most luminous EM source
since the Big Bang

-2 X-ray, UV and optical

afterglows
& Blmodal distribution Of Nicolle Rage‘r Fuller/NSF

durations 120] Roporis 442 (2007)
# Short GRBs 100 16625

® Duration:Too <2 s _, -

2 Mean redshift of 0.5 60
-2 Long GRBs 40

20
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GRB Progenitors

‘2 Intense flashes of gamma-
rays:
-2 Most luminous EM source
since the Big Bang
-2 X-ray, UV and optical
afterglows

& Blmodal distribution Of Nicolle Rage‘r Fuller/NSF
durations o) NP
-+ Short GRBs 00| 16625
*  Duration:Teo < 2 s —
2 Mean redshift of 0.5 60
-2 Long GRBs 40
‘2 DurationTgo > 2 s 20
*  Higher z, track Star Form. Rate.

=
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GRBs - The
Long and Short

of it

Gamma-Ray Bursts (GRBs): The Long and Short of It

Long gamma-ray burst
(>2 seconds’duration)

A red-giant
star collapses

_.,.? b onto Its ¢

..becoming so
dense that it
- E.-:f.pe!f. its outer
jayers ina
£ sUpeTnova

/ﬁxploshm

Torqs

Short gamma-ray burst
(<2 seconds’duration)

»—
#

~ g = \\
Stars* in

a compact
binary system
begin to spiral
inward....

o
L

eventually
colliding.

e
- ‘.'/ &

The resulting torus
has at its center

a powerful

black hole.

*Possibly neutron stars.
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G RBS - The Gamma-Ray Bursts (GRBs): The Long and Short of It
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Origin of GRB 070201
from LIGO Observations

LSC, Astrophys. |. 681, (2008) 1419
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LSC, Astrophys. |. 681, (2008) 1419

-2 LSC searched for binary inspirals
and did not find any events:
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Origin of GRB 070201
from LIGO Observations

LSC, Astrophys. |. 681, (2008) 1419

-2 LSC searched for binary inspirals

and did not find any events:
results in Ap] 681 1419 2008

‘2 Null inspiral search result
excludes binary progenitor in

M3
-2 Soft Gamma-ray Repeater (SGR)
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models predict energy release § 3 \
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first ever extragalactic SGR R

00"48™ 00"44™ 00"40™ 00"38"
RA (2000)
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Search for GRBs during all of S5
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2 Nov 2005 - Oct 2007: 212 GRBs
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Search for GRBs during all of S5

‘2 Nov 2005 - Oct 2007: 212 GRBs

2= LSC-Virgo searched for |37 GRBs with 2 or more LIGO-Virgo
detectors: ~25% with redshift, ~10% short duration: Null result

0
degrees East
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Search for GRBs during all of S5

2 Nov 2005 - Oct 2007: 212 GRBs
2= LSC-Virgo searched for |37 GRBs with 2 or more LIGO-Virgo
detectors: ~25% with redshift, ~10% short duration: Null result

‘® Polarization-averaged antenna response of LIGO-Hanford, dots
show location of GRBs during S5-VSRI

0
degrees East
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Spin-down limit on the Crab pulsar
LSC, Ap| Lett., 683, (2008) 45
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spin frequency of v = 29.78 Hz
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Spin-down limit on the Crab pulsar

LSC, Ap] Lett., 683, (2008) 45
-2~ 2 kpc away, formed in a spectacular g |

supernova in 1054 AD

> Losing energy in the form of particles
and radiation, leading to its spin-down

spin frequency of v = 29.78 Hz
spin-down rate, v ~ —3.7x10" 1V Hz s !
E =4n21.v|p| ~ 4.4x103" W

Wl = 8.06 x 10719 Ingr, L (17| /v) /2
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Spin-down limit on the Crab pulsar

LSC, Ap) Lett., 683, (2008) 45
-2~ 2 kpc away, formed in a spectacular 2 .

supernova in 1054 AD

> Losing energy in the form of particles
and radiation, leading to its spin-down

spin frequency of v = 29.78 Hz
spin-down rate, U & —3.7x107 1V Hzs !
E = Ar?I.v|p| ~ 4.4x103 W
hid = 8.06 x 10719 Isgr ) (|0|/v)!/?

> LSC have searched for gravitational

waves in data from the fifth science
run of LIGO detectors

Tuesday, 14 December 2010




Spin-down limit on the Crab pulsar
LSC, Ap) Lett., 683, (2008) 45
-2~ 2 kpc away, formed in a spectacular 2 .

supernova in 1054 AD
> Losing energy in the form of particles
and radiation, leading to its spin-down

spin frequency of v = 29.78 Hz
spin-down rate, v ~ —3.7x10" 1V Hz s !
E =4n21.v|p| ~ 4.4x103" W

Wl = 8.06 x 10719 Ingr, L (17| /v) /2

> LSC have searched for gravitational
waves in data from the fifth science
run of LIGO detectors

- Lack of GW at S5 sensitivity means a
limit on ellipticity a factor 4 better
than spin-down upper limit - less
than 4% of energy in GW

 h3P = 34%x10725. ¢ =1.8x10""*
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Spin-down limit on the Crab pulsar

LSC, Ap) Lett., 683, (2008) 45
-2~ 2 kpc away, formed in a spectacular 2 .

supernova in 1054 AD

> Losing energy in the form of particles
and radiation, leading to its spin-down

spin frequency of v = 29.78 Hz
spin-down rate, v ~ —3.7x10" 1V Hz s !
E =4n21.v|p| ~ 4.4x103" W

Wl = 8.06 x 10719 Ingr, L (17| /v) /2

> LSC have searched for gravitational |
waves in data from the fifth science
run of LIGO detectors

- Lack of GW at S5 sensitivity means a
limit on ellipticity a factor 4 better

than spin-down upper limit - less
than 4% of energy in GW

Chy?”t = 34x107%5. ¢ =1.8x10"4
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SS Key Results

: —Crab pulsar result

| —J0537-6910 result

| —J1952+3252 result

| ~|---Crab pulsar spin-down |
|- --J0537-6910 spin-down|

- |---J1952+3252 spin-down

—h

o
W
©

moment of inertia (kg m2)
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10 107"
ellipticity
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Some Interesting Upper Limits

[JD) v (Hz)  » (Hzs™')  distance (kpc) spin-down limit  joint h3>®  ellipticity — hJ>” /R

520 221.80 —6.1 x 10167 1.3 1.04 x 1027 757 x 10726 4.65 x 107 73
510 202.79 —5.1 x 10167 0.2 5.13 x 10727 4.85 x 10726 6.96 x 108 9.4
388 268.36 —2.0 x 10~1°f 2.5 8.71 x 10728 6.12x 10726 513 x 1077 70
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_ A glitch in Vela

McCulloch et al,Aust. J. Phys. 1987

Pulsar Glitches
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Pulsar Glitches

2 Pulsars have stable rotation rates:

Penod (ms)

_ A glitch in Vela

89.2614
McCulloch et al,Aust. J. Phys. 1987
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Pulsar Glitches , ... Agichinvea

McCulloch et al,Aust. |. Phys. 1987 _.:*
-® Pulsars have stable rotation rates: _
£ 892812 W
- However, observe secular - -
increase in pulse period &
89.2610 -
89 2608 —— - ~—~ - a—
lime (days) after JD = 2445165-0

A composite Vela image
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Pulsar Glitches , ... Agichinvea

McCulloch et al,Aust. J. Phys. 1987 "

‘2 Pulsars have stable rotation rates: ; | P
-» However, observe secular il *
increase in pulse period £ P
® Glitches are sudden dips in s |
period
ST AL VI R
lime (days) ;rm JI‘)J - 2445165 F

A composite Vela image
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Pulsar Glitches , ... Agichinvea

McCulloch et al,Aust. J. Phys. 1987 = "

-® Pulsars have stable rotation rates: ; | P 4

-» However, observe secular S " *

increase in pulse period __ P

‘® Glitches are sudden dips in M

period

‘® Vela glitches once every few yrs = eaee0s — o

lime (days) after JD = 2445165-0

A composite Vela image
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Pulsar Glitches , ... Agichinvea

McCulloch et al,Aust. J. Phys. 1987 "

2 Pulsars have stable rotation rates: '

£ 89.2012 } o
‘2 However, observe secular - 1 -
increase in pulse period &
- Glitches are sudden dips in N
period
- Vela glitches once every few yrs oz — -
2 Could be the result of transfer of Time (days) after JD = 2445165.0
angular momentum from core to @
(g
crust £
o
S
)
)
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o
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Pulsar Glitches

2 Pulsars have stable rotation rates:

‘& However, observe secular
increase in pulse period
- Glitches are sudden dips in
period

- Vela glitches once every few yrs

‘2 Could be the result of transfer of
angular momentum from core to

crust

- At some critical lag rotation rate
superfluid core couples to the
curst imparting energy to the

crust

\
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Pulsar Glitches

Pulsars have stable rotation rates:
‘2 However, observe secular

increase in pulse period

Glitches are sudden dips in
period

- Vela glitches once every few yrs

Could be the result of transfer of
angular momentum from core to

crust

-» At some critical lag rotation rate

superfluid core couples to the
curst imparting energy to the
crust

AJ ~ILAQ  AE = AJQ,,

\
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Pulsar Glitches

Pulsars have stable rotation rates:
‘2 However, observe secular

increase in pulse period

Glitches are sudden dips in
period

- Vela glitches once every few yrs

Could be the result of transfer of
angular momentum from core to

crust

-» At some critical lag rotation rate

superfluid core couples to the
curst imparting energy to the
crust

AJ ~ I,AQ
AQ/Q ~10°

AE = AJQ,,

\
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Pulsar Glitches

2 Pulsars have stable rotation rates:

‘& However, observe secular
increase in pulse period

- Glitches are sudden dips in
period
- Vela glitches once every few yrs

2 Could be the result of transfer of
angular momentum from core to
crust

- At some critical lag rotation rate
superfluid core couples to the
curst imparting energy to the
crust

AJ ~TAQ  AE = AJQp,
AQ/Q ~ 10
AE ~ 1071-107 "My e?

\

Perniod (ms)

_ A glitch in Vela
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NS Normal Mode Oscillations
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NS Normal Mode Oscillations

‘2~ Sudden jolt due to a glitch, and superfluid vortex unpinning,
could cause oscillations of the core, emitting gravitational waves
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NS Normal Mode Oscillations

2 Sudden jolt due to a glitch, and superfluid vortex unpinning,
could cause oscillations of the core, emitting gravitational waves

® These normal mode oscillations have characteristic frequencies and
damping times that depend on the equation-of-state
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NS Normal Mode Oscillations

-2 Sudden jolt due to a glitch, and superfluid vortex unpinning,
could cause oscillations of the core, emitting gravitational waves
® These normal mode oscillations have characteristic frequencies and

damping times that depend on the equation-of-state

2 Detecting and measuring normal modes could reveal the
equation-of-state of neutron stars and their internal structure
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Accreting Neutron Stars

< 1j‘lSun NS
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: | cutoff E
i breakup -
. 3
R =

Spin Frequency (Hz)

pulses & burst oscillations

Tuesday, 14 December 2010




Accreting Neutron Stars

-2 Spin frequencies of

accreting NS seems to be
stalled below 700 Hz

| Cutoff _

breakup :
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Accreting Neutron Stars

-2 Spin frequencies of
accreting NS seems to be

stalled below 700 Hz

2= Well below the break-up
speed
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breakup :
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Accreting Neutron Stars

-2 Spin frequencies of
accreting NS seems to be

stalled below 700 Hz

2= Well below the break-up
speed
-2 What could be the reason
for this stall?

| Cutoff _

breakup :

Spin Frequency (Hz)

pulses & burst oscillations
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Accreting Neutron Stars

-2 Spin frequencies of
accreting NS seems to be
stalled below 700 Hz
2= Well below the break-up

speed < 1j‘[Sun NS

-2- What could be the reason ._red giant
for this stall?

->- Balance of accretion torque
with GW back reaction torque

cutoff _

breakupé

Spin Frequency (Hz)

pulses & burst oscillations
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Accreting Neutron Stars

-2 Spin frequencies of
accreting NS seems to be
stalled below 700 Hz
2= Well below the break-up

speed < IMS NS

‘2 What could be the reason . red glant
for this stall? O .

->- Balance of accretion torque
with GW back reaction torque

2= Could be explained if
ellipticity is ~ 108

Cutoff _

breakup :

Spin Frequency (Hz)

pulses & burst oscillations
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Accreting Neutron Stars

-2 Spin frequencies of
accreting NS seems to be
stalled below 700 Hz
2= Well below the break-up

speed < 1j‘[Sun NS

-2- What could be the reason ._red giant
for this stall?

2= Could be induced by
mountains or relativistic

instabilities, e.g. -modes

| \ cutoff 3
- Balance of accretion torque : | ]
with GWV back reaction torque o= | =

# |
-2~ Could be explained if 1 ! 4
vt . -8 ® B .
ellipticity is ~ 10 o ! breakup

|

[

1

Spin Frequency (Hz)

pulses & burst oscillations
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Sensitivity to Accreting NS
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Cosmology
-2- Cosmography
*® Ho, dark matter and dark energy densities, dark energy EoS w
-2 Black hole seeds
‘> Black hole seeds and their hierarchical growth

-2 Anisotropic cosmologies

‘® In an anisotropic Universe the distribution of H on the sky
could show residual quadrupole and higher-order
anisotropies

-2 Primordial gravitational waves
® Quantum fluctuations in the early Universe, stochastic BG
-2 Production of GW during early Universe phase
transitions
‘® Phase transitions, pre-heating, re-heating, etc.
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Stochastic Backgrounds

-2 Primordial background

-2 Quantum fluctuations produce a background GWV that
is amplified by the background gravitational field

-2 Phase transitions in the Early Universe

-2 Cosmic strings - kinks can form and “break” producing
a burst of gravitational waves
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Stochastic Backgrounds

-2 Primordial background

-2 Quantum fluctuations produce a background GWV that
is amplified by the background gravitational field
-2 Phase transitions in the Early Universe
-2~ Cosmic strings - kinks can form and “break” producing
a burst of gravitational waves
-2 Astrophysical background

-2 A population of Galactic white-dwarf binaries produces
a background above instrumental noise in LISA
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1 dpgw

-2 Strength of stochastic Qo (f) =
background
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Stochastic Backgrounds in LIGO

1 dpgw
-2 Strength of stochastic Qo (f) = Pe
Pcrit dlnf
background
. . . dfﬂ < -5
- Nucleosynthesis upper-limit i gwl(f) S 1.5 x 107

-2 Upper limit from LIGO data Quw(f) < 6.5 % 10-5
gw -

from the 4th Science run LSC, Astrophys. |. 659 (2007) 918
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Stochastic Backgrounds in LIGO

1 dpgw
-2 Strength of stochastic Qo (f) = Pe
Pcrit dlnf
background
. . . dfﬂ < -5
- Nucleosynthesis upper-limit i gwl(f) S 1.5 x 107

-2 Upper limit from LIGO data

| 2ew(f) < 6.5 x 1072
from the 4th Science run

LSC, Astrophys. J. 659 (2007) 918

nature Vol 460|20 August 2009|doi:10.1038/nature08278

LETTERS

An upper limit on the stochastic gravitational-wave
background of cosmological origin

The LIGO Scientific Collaboration* & The Virgo Collaboration*
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Cosmological parameters

D (\)_('(l—b:) / dz
o Hy Jo [Qa(14 2)3+ Qa(1 + z)304w)]/2
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Cosmological parameters

ByLs) = c¢(l+2) / dz
ST Hy o [Qa(1 4+ 2)8 + Qa(1 + 2)30+0] 2

-2~ Luminosity distance Vs. red shift depends on a
number of cosmological parameters H,, €2,,, €2,, €24,

w, etc.
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Cosmological parameters

c¢(l +2) dz

[)‘(;' - / -
- Hy  Jo (14 2)3 4+ Qa(1 4+ .:)“““'"]"’"

-2~ Luminosity distance Vs. red shift depends on a
number of cosmological parameters H,, €2,,, €2,, €24,

w, etc.

-2~ Einstein Telescope will detect 1000’s of compact
binary mergers for which the source can be
identified (e.g. GRB) and red-shift measured.
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Cosmological parameters

f‘(l*-:')/ d>
Ho  Jo [Qa(1+ 2)3 + Qa(1 + 2)30+w]'/

[)L(:) —

-2~ Luminosity distance Vs. red shift depends on a
number of cosmological parameters H,, €2,,, €2,, €24,

w, etc.

-2~ Einstein Telescope will detect 1000’s of compact
binary mergers for which the source can be
identified (e.g. GRB) and red-shift measured.

-2~ A fit to such observations can determine the
cosmological parameters to better than a few
percent.
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Schutz 86
Compact Binaries are Standard Sirens

'\/’ /6
>~ Amplitude of gravitational waves depends on /; ~x
& Chirp-mass=u3>M?> Dy,
- Gravitational wave observations can measure both
2= Amplitude (this is the strain caused in our detector)
-2 Chirp-mass (because the chirp rate depends on the chirp mass)

‘> Therefore, binary black hole inspirals are standard sirens

2= From the apparent luminosity (the strain) we can conclude the
luminosity distance

-2 However, GW observations alone cannot determine the
red-shift to a source

‘¢ Joint gravitational-wave and optical observations can
facilitate a new cosmological tool
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-2 |nitially small black holes may grow by hierarchical merger
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Hierarchical Growth of Black Holes
in Galactic Nuclei
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-2 |nitially small black holes may grow by hierarchical merger
* ET could observe seed black holes if they are of order 1000 solar mass
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Models of Black Hole Seeds
and Their Evolution

Class. Quantum Grav. 26 (2009) 094027 K G Arun et al
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Fundamental Physics

2 Properties of gravitational waves
-2 Test wave generation formula beyond quadrupole approx.
-2 Number of GW polarizations!?
-2 Do gravitational waves travel at the speed of light?
-2 Equation-of-State of dark energy
2= GW from inspiralling binaries are standard sirens
-2 Equation-of-State of supra-nuclear matter

-2 Signature NS of EoS in GW from binary neutron star
mergers

-2 Black hole no-hair theorem and cosmic censorship
-2 Are black hole candidates black holes of general relativity?

-2 Merger dynamics of spinning black hole binaries
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Black hole quasi-normal modes

-2 Damped sinusoids with characteristic frequencies

and decay times

-2 In general relativity frequencies fimn and decay times tjmn all
depend only on the mass M and spin g of the black hole

2 Measuring two or modes unambiguously, would

severely constrain general relativity

-2 If modes depend on other parameters (e.g., the structure
of the central object), then test of the consistency
between different mode frequencies and damping times

would fail
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Tests with QNM

Kamaretsos, Hannam, Husa, Sathyaprakash, 2010

-2 Studying QNM from NR simulations at various mass ratios: I:1,
1:2, |:4, 1.8, final spins from -0.8 to +0.8

» It is not too difficult to generate the QNM only part of the merger signal
» Can carry out a wide exploration of the parameter space

2 What is the relative energy in the various ringdown modes?

* Are there at least two modes containing enough energy so that their
damping times and frequencies can be measured with good (i.e. at least
0% accuracy)?

* 33 seems to contain contain enough energy compared to 22 modes;
should be possible to extract the total mass and spin magnitude

» Measuring the relative amplitudes of the different modes can shed light
on the binary progenitor, namely the total mass and its mass ratio

* Polarization of ringdown modes can measure the spin axis of merged BH
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Emitted energy and relative amplitudes
of different quasi-normal modes

Kamaretsos, Hannam, Husa, Sathyaprakash, 2010

Table 1: For different mass ratios (g=1, 2, 3, 4, 11), we show the
final spin of the black hole percent of energy in the radiation,
amplitude of (2,1), (3,3), (4,4) modes relative to (2,2) mode.

% total
energy Ay /A, Ass/A,, AL/A,,

0.69 4.9 0.04 0.00 0.05
0.62 3.8 0.05 0.13 0.06
0.54 2.8 0.07 0.21 0.08
0.47 2.2 0.08 0.25 0.09
11 0.25 0.7 0.14 0.31 0.14

A~ W N =
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LISA measurement accuracies of amplitudes
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LISA measurement accuracies of mode frequencies
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LISA measurement accuracies damping times

[
OI
[\

I\IIIII|

[
oI

(8
IIIIII|\

Relative error in mode damping times

—
—
—
—
—
—
—
—
—
—
- -
—

—

—— (2,2) mode, 1.3 mHz
-—- (3,3) mode, 2.1 mHz
— —- (44) mode, 2.8 mHz
— — (2,1) mode, 1.2 mHz

—h

3 4 )
Mass ratio (m1/m?2)

6

7

8

9

|
10

—h
—h

Tuesday, 14 December 2010




How can QNMs help test GR
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How can QNMs help test GR

Inonsistency in M-j plane resulting from
a 1% departure in t,, from the GR value
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Black Holes Ain’t Got No Hair
But They Do Grin

-2 Black hole no hair theorems don’t apply to
deformed black holes

-2 From the ringdown signals it should in principle
be possible to infer the nature of the perturber

‘2 In the case of binary mergers it should be
possible to measure the masses and spins of
the component stars that resulted in the final
black hole
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-2 Was Einstein right?
-® |s the nature of gravitational radiation as predicted by Einstein!?
‘® Are black holes in nature black holes of GR?
‘® Are there naked singularities?

-2 Unsolved problems in astrophysics

‘* What is the origin of gamma ray bursts!?

® What is the structure of neutron stars and other compact objects!?
-2 Cosmology

* Measurement of Hubble parameter, dark matter density, etc.
* Demography of massive black holes at galactic nuclei?
> Phase transitions in the early Universe?

-2 Fundamental questions
* What were the physical conditions at the big bang?
* What is dark energy?
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