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Over View

+ LISA - Laser Interferometer Space Antenna, is a ESA-
NASA joint space mission to detect low-frequency gravitational
waves.

+ The mission is expected to take-off in year 2020.

+ Motivation for detector in space.

+ Types of sources in the LISA band.

+ Brief overview of the LISA mission.

+ Time-Delay interferometer.
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Sensitivity Curve

+ LISA is sensitive to gravitational waves in the frequency range
10−4 Hz to 1 Hz.
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Galactic Binaries

+ Binary stars emit gravitation wave a frequency twice that of
their orbital frequency.

+ Lowest of LISA frequency is 1× 10−4 Hz, orbital frequency
must be 5×10−5 Hz or orbital period 5.5 Hrs.

+ Consider two 1 M� stars, their orbital separation ro∼ 1.1×109

mts, while solar radius is ∼ 7×108mts

+ White dwarfs have mass about 1−1.4 M� while their radius is
only 1000 KM.

+ In our Galaxy there 1011 stars and about 50% of them are bi-
nary system.
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+ There millions of binary stars
in the LISA band especially be-
tween 0.1 mHz to 3 mHz, and
individual sources can not be re-
solved. These stars generate
a stochastic noise the detector
called white dwarf noise.

+ Sensitivity curve for bi-
nary confusion noise
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+ We have catalog of about 400 such objects from optical as-
tronomy. There are about 5 of them known in the LISA.

+ LISA observation can give distribution of them in our Galaxy
and one can constrain the Galactic models based on LISA ob-
servations.
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Super massive blackhole binaries
+ There are strong evidence of existence of super massive black-

hole of mass 105 to 108 M� at the center of most of galaxies.

+ It is seen that Galaxies collide,
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Binary blackhole’s are one of promising sources in the LISA
band, can seen almost any where in the Universe.
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Sensitivity curve for blackhole binaries:
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Super-massive blackhole binaries are very important sources in
the LISA band.

+ The binary blackholes can be used to make an independent
estimate of Cosmological parameter.

+ They serve as test for Einstein theory in the strong field limit.

+ Can be used to test the alternative theory of gravity.
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Extreme mass ratio insprial(EMRI’s)

+
Galactic centers, such as our
Galaxy hosts blackhole of
mass 105 M�. Some of the
stars orbiting around them
can fall in to blackholes emit-
ting gravitational waves:

+ Or one can have blackholes of mass 1− 10 M� falling into
central blackhole
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+ We have small objects of mass 1 to 50 M� falling in to black-
holes of mass 106 M� is called EMRI
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Sensitivity curve for EMRI:
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In order to observer astrophysically important sources such as
these, one needs a space mission such as LISA.
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Mission overview

+ The mission LISA consists
of three identical space-
crafts orbiting around
the Sun forming a giant
laser interferometer of arm
length 106 KM

+ Six laser beams are ex-
changed between these
three spacecraft to detect
gravitational wave signal
in the band 10−4 - 1 Hz
with peak sensitivity of h∼
10−23 .
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Each spacecraft hosts, two test masses and optical system to
communicate with the distance spacecraft
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LISA orbits
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LISA orbits

+ Each of the LISA spacecraft go around Sun, in elliptical orbits
such that entire formation remain almost equilateral triangle.

+ The plane of the LISA triangle makes an angle of 60o with the
ecliptic plane.

+ The center of this LISA constellation moves around the Sun in
an earth-like orbit (R = 1AU), 20o behind the Earth.

+ The triangular constellation revolves once around its center as
it completes one orbit in the course of one year.
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A choice of orbits

A choice of orbits are given by,
X1 = R(cosψ1 + e)cosε,

Y1 = R
√

1− e2 sinψ1,

Z1 = R(cosψ1 + e)sinε.

60
o

R(1+e)
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√

3
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l
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(

1+
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3
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3
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2
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−1

ψ1 + esinψ1 = Ωt

Orbits for other two spacecraft can obtained by rotating this by
180o about z−axis



21

CW-Frame and Equations
Clohessy and Wiltshire or Hill’s equations are linearised
dynamical equations for test-particles in the neighborhood of
reference point, in our case the LISA centroid. These equations
are written in a frame which has its origin on the reference orbit
and also rotates with angular velocity Ω. The equation for a free
test particle are given by,

ẍ−2Ωẏ−3Ω
2x = 0,

ÿ+2Ωẋ = 0,

z̈+Ω
2z = 0.



22

The solutions:

x(t) =
ẋ0

Ω
sinΩt−

(
3x0 +

2ẏ0

Ω

)
cosΩt +2

(
2x0 +

ẏ0

Ω

)
y(t) =

(
6x0 +

4ẏ0

Ω

)
sinΩt +

2ẋ0

Ω
cosΩt−3(2Ωx0 + ẏ0) t

+
(

y0−
2ẋ0

Ω

)
z(t) = z0 cosΩt +

ż0

Ω
sinΩt

Ignoring runaway solutions and offset solution the condition for
stable configuration is given by

z0 = µ
√

3x0 and
ż0

Ω
=

1
2

µ
√

3y0, µ =±1
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The solutions are given by,

x(t) =
1
2

ρ0 cos(Ωt−φ0) ,

y(t) = −ρ0 sin(Ωt−φ0) ,

z(t) = µρ0

√
3

2
cos(Ωt−φ0) ,

where
ρ0 =

√
4x2

0 + y2
0 tanφ0 =

y0

2x0
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The orbits given earlier when when approximated to first order
in α = l/(2R) and transformed to CW frame we get:

xk = eRcos
[

Ωt− (k−1)
2π

3

]
yk = −2eRsin

[
Ωt− (k−1)

2π

3

]
zk =

√
3eRcos

[
Ωt− (k−1)

2π

3

]
we identify ρ0 = 2eR and φ0 = 2π(k−1)/3
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The general result is

In the CW frame there are just two planes which make angles of
±π/3 with the (x-y) plane, in which test particles obeying CW
equations perform rigid rotations about the origin with angular
velocity −Ω.

S. V. Dhurandhar et. al, “Fundamentals of the LISA Stable Flight Formation”, Class.
Quantum Grav. 22 481(2005).
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Time-Delay interferometer

There are various difficulties in building conventional
interferometer in space.

+ LISA uses 1 Watt laser, after traveling for 109 mts power of
laser is reduced to few pico watts. It is not practical to reflect
this back to from the interferometer.

+ For locking Michelson like interferometer, distance between the
end points must be integral multiple of λ

2 , which is impossible
in space.

+ Because different lasers are used at eand points, laser noise
play important role.
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+ Lasers typically have a frequency fluctuation of the order:

∆ν0

ν0
' 10−14 � h' 10−21

+ In the case of ground based detectors, where both arms are
exactly of same length (integral multiple of λ

2 )and the laser
noise cancels out.

+ Time-Delay interferometry is one of novel technique suggested
by Armstrong et. al (J.W. Armstrong, F.B Estabrook and M. Tinto, Astrophys.

J. 527, 814(1999).) for constructing unequal arm interferometer in
space

+ In this method the individual beams are combined off-line after
introducing suitable time delay corresponding to the light travel
time across the arms to simulate the interferometer.
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Unequal Arm Interferometer

Let Φ(t) be the Phase fluctua-
tion of laser
If L1 6= L2

Φ1(t) = Φ(t−2L1)−Φ(t)

Φ2(t) = Φ(t−2L2)−Φ(t)

Clearly,

Φ1(t)−Φ2(t) 6= 0
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We can still cancel-out the
laser phase noise by taking the
combination,

X1 = [Φ1 (t−2L2)−Φ1 (t)]

X2 = [Φ2 (t−2L1)−Φ2 (t)]
Clearly,

X1−X2 = 0!

LISA is a more complex system.
There are three arms and six
beams.
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Delay Operator
S. V. Dhurandhar et. al, “Algebraic approach to time-delay data analysis for LISA”, Phs Rev.
D65, 102002(2002), gr-qc/0112059.

Let a(t) be any arbitrary function of time and Lk be the length of
the kth arm, then we define time delay operator for the arm k as,

Dka(t) = a(t−Lk)

c = 1 and all the distances are measured in the unit of time.
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Delay Operator
S. V. Dhurandhar et. al, “Algebraic approach to time-delay data analysis for LISA”, Phs Rev.
D65, 102002(2002), gr-qc/0112059.

Let a(t) be any arbitrary function of time and Lk be the length of
the kth arm, then we define time delay operator for the arm k as,

Dka(t) = a(t−Lk)

c = 1 and all the distances are measured in the unit of time.

Some Properties of Delay Operator:

the delay corresponding to the length of lL1 +mL2 +nL3 is,
Dl

1Dm
2 Dn

3
This is equivalent to successively applying the delay operator

They commute: Dk
1Dl

2 = Dl
2Dk

1
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Known Noise cancellation solution
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Laser noise Cancellation Data combination

A general data combination is given by the combination of U i

and V i of the form

X =
3

∑
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piV i +qiU i

pi and qi are polynomial in Di, This is clear from the properties
of Di
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Laser noise Cancellation Data combination

A general data combination is given by the combination of U i

and V i of the form

X =
3

∑
i=1

piV i +qiU i

pi and qi are polynomial in Di, This is clear from the properties
of Di

A noise cancellation Data combination, we need to determine pi

and qi such that,
3

∑
i=0

piV i +qiU i = 0

We need to solve for (pi,qi) as functions of Di.
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The solution to this equation is well known in the algebra and
forms a module called “First Module of Syzygies” , over the
polynomial ring Di.
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Vector Space Vs Modules

+ Vector spaces are defined
over field F .

Modules are defined over
ring R.

+ Each element of field has
multiplicative inverse.

The elements of ring in gen-
eral do not have multiplica-
tive inverse.

+ Set of all real numbers R,
Complex numbers C form
fields.

Set of polynomials are im-
portant example for rings. No
inverse for Polynomial !

+ Basis can generate the com-
plete vector space by taking
the combination ∑aivi where
ai ∈F and vi’s are basis el-
ements.

They are called generators!
and any element of module
can be written of the form
∑ pigi where pi ∈R and gi’s
are the generators.
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The Generators
The solutions are represented by generator with (pi,qi),

X (1) = α =
(

1, D3, D1D3, 1, D1D2, D2
)
,

X (2) = β =
(

D1D2, 1, D1, D3, 1, D2D3
)
,

X (3) = γ =
(

D2, D2D3, 1, D1D3, D1, 1
)
,

X (4) = ζ =
(

D1, D2, D3, D1, D2, D3
)
.

With these generator any solution can be expressed as:

X(pi,qi) =
4

∑
I=1

α(I)X (I)

In general, α(I) can be polynomials in Di
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