Gravitational Wave Data Analysis

Rajesh Kumble Nayak,

IISER-Kolkata

Data Analysis

Data analysis plays an important role in gravitational wave astronomy.

Data Analysis

Data analysis plays an important role in gravitational wave astronomy.

Source parameter estimation from the signal is one of the very important problem in the data analysis.

Data Analysis

Data analysis plays an important role in gravitational wave astronomy.

Source parameter estimation from the signal is one of the very important problem in the data analysis.

Data from the detector consists of a time series from which all the information about sources have to be extracted or filtered!

Data Analysis

Data analysis plays an important role in gravitational wave astronomy.

Source parameter estimation from the signal is one of the very important problem in the data analysis.

Data from the detector consists of a time series from which all the information about sources have to be extracted or filtered!

This is done through an efficient method called match-filtering.

Theoretical Models Of the source

Fourier Series

Any seasonally smooth function $f(x)$ in an interval $[-L, L]$, can be expressed in terms of Fourier series as:

$$
f(x)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{L}\right)+\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{L}\right) .
$$

where the coefficients a_{n} and b_{n} are given by,

$$
\begin{aligned}
& a_{n}=\frac{1}{L} \int_{-L}^{+L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x \\
& b_{n}=\frac{1}{L} \int_{-L}^{+L} f(x) \sin \left(\frac{n \pi x}{L}\right)
\end{aligned}
$$

Example : Express the function

$$
f(x)=x \quad-\pi<x<\pi
$$

Example : Express the function

$$
\begin{aligned}
& f(x)=x \quad-\pi<x<\pi \\
a_{0}= & \frac{1}{\pi} \int_{-\pi}^{\pi} x d x=0 \\
a_{n}= & \frac{1}{\pi} \int_{-\pi}^{\pi} x \cos n x d x=0 \\
b_{n}= & \frac{1}{\pi} \int_{-\pi}^{\pi} x \sin n x d x=-\frac{2 \pi}{n} \cos n \pi \\
= & \frac{2}{n}(-1)^{n+1}
\end{aligned}
$$

and the function can be written as:

$$
f(x)=2 \sum_{n=1}^{\infty}(-1)^{n+1} \frac{\sin n x}{n} .
$$

The plots of various terms of this series is shown in figure

Let us look at series

$$
f\left(x, x_{0}\right)=\sum_{n=1}^{\infty} \sin \left(n x_{0}\right) \sin (n x)
$$

Let us look at series

$$
f\left(x, x_{0}\right)=\sum_{n=1}^{\infty} \sin \left(n x_{0}\right) \sin (n x)
$$

Let us look at series

$$
f\left(x, x_{0}\right)=\sum_{n=1}^{\infty} \sin \left(n x_{0}\right) \sin (n x)
$$

We have the condition

$$
\delta\left(x-x_{0}\right)=\sum_{n=1}^{\infty} \sin \left(n x_{0}\right) \sin (n x)
$$

is known as completeness or Parseval's Theorem

Fourier representation

The coefficients b_{n} can fully describe the function, because basis function $\sin (n x)$ are known. This is called Fourier representation of function

Fourier domain
representation

Fourier representation

The coefficients b_{n} can fully describe the function, because basis function $\sin (n x)$ are known. This is called Fourier representation of function

Fourier domain

Time domain representation representation

Sampling interval

Output from the detector have to be sampled at the regular interval. $\left\{x_{0}, x_{1}, x_{2}, \cdots x_{n}\right\} \delta x=x_{i}-x_{i-1}$

Sampling interval

Output from the detector have to be sampled at the regular interval. $\left\{x_{0}, x_{1}, x_{2}, \cdots x_{n}\right\} \delta x=x_{i}-x_{i-1}$

Let us consider sampling of $\sin (w x)$

Sampling interval

Output from the detector have to be sampled at the regular interval. $\left\{x_{0}, x_{1}, x_{2}, \cdots x_{n}\right\} \delta x=x_{i}-x_{i-1}$

Let us consider sampling of $\sin (w x)$

Sampling interval

Output from the detector have to be sampled at the regular interval. $\left\{x_{0}, x_{1}, x_{2}, \cdots x_{n}\right\} \delta x=x_{i}-x_{i-1}$

Let us consider sampling of $\sin (w x)$

Let use Taylor series:

$$
f(x) \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) \delta x+\frac{1}{2} f^{\prime \prime}\left(x_{0}\right) \delta x^{2}+\cdots
$$

Let use Taylor series:

$$
\begin{gathered}
f(x) \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) \delta x+\frac{1}{2} f^{\prime \prime}\left(x_{0}\right) \delta x^{2}+\cdots \\
f(x)=\sin (w x), f^{\prime}(x)=w \sin (w x), f^{\prime \prime}(x)=-w^{2} \sin (w x)
\end{gathered}
$$

Let use Taylor series:

$$
\begin{gathered}
f(x) \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) \delta x+\frac{1}{2} f^{\prime \prime}\left(x_{0}\right) \delta x^{2}+\cdots \\
f(x)=\sin (w x), f^{\prime}(x)=w \sin (w x), f^{\prime \prime}(x)=-w^{2} \sin (w x)
\end{gathered}
$$

we get

$$
f(x) \approx \sin \left(w x_{0}\right)+w \cos \left(w x_{0}\right) \delta x-\frac{1}{2} w^{2} \sin \left(w x_{0}\right) \delta x^{2}
$$

Since $\left|\sin \left(w x_{0}\right)\right| \leq 1$ and $\left|\cos \left(w x_{0}\right)\right| \leq 1$ we need

$$
\delta x \ll \frac{1}{w}
$$

Nyquist Theorem

Nyquist Theorem-2cm

If a function has maximum Fourier frequency f_{m}, the sampling interval δx such that

$$
\delta x<\frac{1}{2 f_{m}}
$$

Fourier transform

In the Fourier series we can replace $\sin (n x)$ and $\cos (n x)$ by $e^{i n x}$ Then we have:

$$
g(x)=\sum_{n=0}^{\infty} \tilde{g}_{n} e^{i\left(\frac{n \pi x}{L}\right)}
$$

Fourier transform

In the Fourier series we can replace $\sin (n x)$ and $\cos (n x)$ by $e^{i n x}$ Then we have:

$$
g(x)=\sum_{n=0}^{\infty} \tilde{g}_{n} e^{i\left(\frac{n \pi x}{L}\right)}
$$

where coefficient \tilde{g}_{n} is given by,

$$
\tilde{g}_{n}=\int_{-L}^{L} g(x) e^{-i\left(\frac{n \pi x}{L}\right)} d x
$$

Fourier transform

In the Fourier series we can replace $\sin (n x)$ and $\cos (n x)$ by $e^{i n x}$ Then we have:

$$
g(x)=\sum_{n=0}^{\infty} \tilde{g}_{n} e^{i\left(\frac{n \pi x}{L}\right)}
$$

where coefficient \tilde{g}_{n} is given by,

$$
\tilde{g}_{n}=\int_{-L}^{L} g(x) e^{-i\left(\frac{n \pi x}{L}\right)} d x
$$

If we take limit $L \rightarrow \infty$

Fourier Transform

Fourier transform a function $f(x)$ is defined as,

$$
\tilde{g}(f)=\int_{-\infty}^{+\infty} g(x) e^{-2 \pi i f x} d x
$$

Fourier Transform maps a time series into the series of frequencies (their amplitudes and phases) that composed the time series.

Fourier Transform

Fourier transform a function $f(x)$ is defined as,

$$
\tilde{g}(f)=\int_{-\infty}^{+\infty} g(x) e^{-2 \pi i f x} d x
$$

Fourier Transform maps a time series into the series of frequencies (their amplitudes and phases) that composed the time series.
The inverse Fourier transform is given by:

$$
g(x)=\int_{-\infty}^{+\infty} \tilde{g}(f) e^{2 \pi i f x} d x
$$

Inverse Fourier Transform maps the series of frequencies (their amplitudes and phases) back into the corresponding time series.

Show that for real function $r(x) \tilde{r}(-f)=\tilde{r}(f) *$

Discrete Fourier Transform(DFT)

For a time series data of N samples , $\left\{x_{0}, x_{1}, x_{2}, \cdots x_{N-1}\right\}$ discrete Fourier transform is defined as:

$$
\tilde{x}_{k}=\sum_{j=0}^{N-1} x_{j} e^{-2 \pi i j k / N}
$$

Here complex numbers(time series) x_{j} are transformed to \tilde{x}_{k} (Fourier series)

Discrete Fourier Transform(DFT)

For a time series data of N samples , $\left\{x_{0}, x_{1}, x_{2}, \cdots x_{N-1}\right\}$ discrete Fourier transform is defined as:

$$
\tilde{x}_{k}=\sum_{j=0}^{N-1} x_{j} e^{-2 \pi i j k / N}
$$

Here complex numbers(time series) x_{j} are transformed to \tilde{x}_{k} (Fourier series)

The inverse transform is given by,

$$
x_{j}=\frac{1}{N} \sum_{j=0}^{N-1} \tilde{x}_{k} e^{2 \pi i j k / N}
$$

Here complex numbers \tilde{x}_{k} (Fourier series) are transformed back to (time series) x_{j}

Comparing with continuous version, we get:

$$
f_{k}=\frac{k}{(N \delta x)}=\frac{k}{X}
$$

where $X=x_{n-1}-x_{0}$,
The frequency resolution of the data is

$$
\delta f=\frac{1}{X}
$$

DFT is very useful because they reveal periodicity in input data as well as the relative strengths of any periodic components.

Parseval Theorem

The relation between the Fourier transform and the original time-series data is given by,

$$
\sum_{k=0}^{N-1}\left|\tilde{x}_{k}\right|^{2}=N \sum_{j=0}^{N-1}\left|x_{j}\right|^{2}
$$

Parseval Theorem

The relation between the Fourier transform and the original time-series data is given by,

$$
\sum_{k=0}^{N-1}\left|\tilde{x}_{k}\right|^{2}=N \sum_{j=0}^{N-1}\left|x_{j}\right|^{2}
$$

Parseval Theorem

The relation between the Fourier transform and the original time-series data is given by,

$$
\sum_{k=0}^{N-1}\left|\tilde{x}_{k}\right|^{2}=N \sum_{j=0}^{N-1}\left|x_{j}\right|^{2}
$$

Fourier transform of noise

Fourier transform of noise

