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Data Analysis

+ Data analysis plays an important role in gravitational wave
astronomy.

+ Source parameter estimation from the signal is one of the very
important problem in the data analysis.

+ Data from the detector consists of a time series from which all
the information about sources have to be extracted or filtered!

+ This is done through an efficient method called match-filtering.
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Fourier Series

Any seasonally smooth function f (x) in an interval [−L, L], can
be expressed in terms of Fourier series as:

f (x) = a0 +
∞

∑
n=1

an cos
(nπx

L

)
+

∞

∑
n=1

bn sin
(nπx

L

)
.

where the coefficients an and bn are given by,

an =
1
L

∫ +L

−L
f (x) cos

(nπx
L

)
dx ,

bn =
1
L

∫ +L

−L
f (x) sin

(nπx
L

)
,
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EXAMPLE : Express the function

f (x) = x −π < x < π
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EXAMPLE : Express the function

f (x) = x −π < x < π

a0 =
1
π

∫
π

−π

xdx = 0

an =
1
π

∫
π

−π

x cosnx dx = 0

bn =
1
π

∫
π

−π

x sinnx dx =−2π

n
cosnπ

=
2
n

(−1)n+1

and the function can be written as:

f (x) = 2
∞

∑
n=1

(−1)n+1 sinnx
n

.
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The plots of various terms of this series is shown in figure
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Let us look at series

f (x,x0) =
∞

∑
n=1

sin(nx0)sin(nx)
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Let us look at series

f (x,x0) =
∞

∑
n=1

sin(nx0)sin(nx)

-4

-3

-2

-1

 0

 1

 2

 3

 4

-3 -2 -1  0  1  2  3

"delta049.dat"

We have the condition

δ (x− x0) =
∞

∑
n=1

sin(nx0)sin(nx)

is known as completeness or Parseval’s Theorem
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Fourier representation

The coefficients bn can fully describe the function, because
basis function sin(nx) are known. This is called Fourier
representation of function
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Fourier representation

The coefficients bn can fully describe the function, because
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Sampling interval

+ Output from the detector have to be sampled at the regular
interval. {x0, x1, x2, · · ·xn} δx = xi− xi−1
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Sampling interval

+ Output from the detector have to be sampled at the regular
interval. {x0, x1, x2, · · ·xn} δx = xi− xi−1

+ Let us consider sampling of sin(wx)
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Let use Taylor series:

f (x)≈ f (x0)+ f ′ (x0)δx+
1
2

f ′′ (x0)δx2 + · · ·
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Let use Taylor series:

f (x)≈ f (x0)+ f ′ (x0)δx+
1
2

f ′′ (x0)δx2 + · · ·

f (x) = sin(wx), f ′(x) = wsin(wx), f ′′(x) =−w2 sin(wx)

we get

f (x)≈ sin(wx0)+wcos(wx0)δx− 1
2

w2 sin(wx0)δx2

Since |sin(wx0)| ≤ 1 and |cos(wx0)| ≤ 1 we need

δx� 1
w
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Nyquist Theorem
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Nyquist Theorem-2cm

If a function has maximum Fourier frequency fm , the sampling
interval δx such that

δx <
1

2 fm
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Fourier transform

In the Fourier series we can replace sin(nx)and cos(nx) by einx

Then we have:

g(x) =
∞

∑
n=0

g̃nei(nπx
L )
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Fourier transform

In the Fourier series we can replace sin(nx)and cos(nx) by einx

Then we have:

g(x) =
∞

∑
n=0

g̃nei(nπx
L )

where coefficient g̃n is given by,

g̃n =
L∫
−L

g(x)e−i(nπx
L )dx

If we take limit L→ ∞
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Fourier Transform

Fourier transform a function f (x) is defined as,

g̃( f ) =
+∞∫
−∞

g(x)e−2πi f xdx .

Fourier Transform maps a time series into the series of
frequencies (their amplitudes and phases) that composed the
time series.
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Fourier Transform

Fourier transform a function f (x) is defined as,

g̃( f ) =
+∞∫
−∞

g(x)e−2πi f xdx .

Fourier Transform maps a time series into the series of
frequencies (their amplitudes and phases) that composed the
time series.
The inverse Fourier transform is given by:

g(x) =
+∞∫
−∞

g̃( f )e2πi f xdx
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Inverse Fourier Transform maps the series of frequencies (their
amplitudes and phases) back into the corresponding time
series.

+ Show that for real function r(x) r̃(− f ) = r̃( f )∗
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Discrete Fourier Transform(DFT)
For a time series data of N samples , {x0, x1, x2, · · ·xN−1}
discrete Fourier transform is defined as:

x̃k =
N−1

∑
j=0

x je−2πi jk/N

Here complex numbers(time series) x j are transformed to x̃k

(Fourier series)
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Discrete Fourier Transform(DFT)
For a time series data of N samples , {x0, x1, x2, · · ·xN−1}
discrete Fourier transform is defined as:

x̃k =
N−1

∑
j=0

x je−2πi jk/N

Here complex numbers(time series) x j are transformed to x̃k

(Fourier series)

The inverse transform is given by,

x j =
1
N

N−1

∑
j=0

x̃ke2πi jk/N

Here complex numbers x̃k (Fourier series) are transformed back
to (time series) x j
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Comparing with continuous version, we get:

fk =
k

(Nδx)
=

k
X

where X = xn−1− x0,

The frequency resolution of the data is

δ f =
1
X

DFT is very useful because they reveal periodicity in input data
as well as the relative strengths of any periodic components.
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Parseval Theorem

The relation between the Fourier transform and the original
time-series data is given by,

N−1

∑
k=0
|x̃k|2 = N

N−1

∑
j=0
|x j|2
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Parseval Theorem

The relation between the Fourier transform and the original
time-series data is given by,

N−1

∑
k=0
|x̃k|2 = N

N−1

∑
j=0
|x j|2
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Fourier Transform as filter

Fourier transform of noise
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Fourier Transform as filter

Fourier transform of noise
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