EINSTEIN AND THE ENIGMA OF TIME

"Everything you wanted to know about TIME, but simply did not have TIME to ask !"

Patrick Das Gupta,

Department of Physics and Astrophysics, University of Delhi, Delhi - 110007

September 21, 2005

So, what is time?

* Time is just one damn thing after another.
* Time is nature's way of keeping everything from happening at once.
-- John A. Wheeler
* Past is just a memory. Future is yet to hrappen. Only the Present is real. So, is time just an "instant" that is moving?

Pre- 1905 days life was simple:

PHYSICISTS BELIEVED IN GALILIEAN RELATIVITY

(O , space is SPACE and tim
Never the twain shall mix.

Newtyard Galiling)

From one inertial frame to another:
\# Spatial coordinates transformed, but time did not \# Simultaniety of events was absolute
\# Lengths, areas, volumes, shapes etc. of physical objects did not transform
\# Life-times of radio-active nuclei, amocba, plants, human-beings etc. stayed invariant
\# Span of THIS LECTURE remains 60 min. no matter from which frame you observe

Inshort, physicists had it easy!
Came 1905:
A 26 year old patent clerk entered the scene.
Hearing the old poem:
(O , space is SPACE and time is TIME,
Never the twain shall mix.
he quipped:
Oh yeah! Their mix is no longer a jinx,
For, I have a Minkowskian guick-fix! .

EINSTEIN'S THEORY OF

RELATIVITY

- Every event corresponds to a point in space-time.
- Space and time are just different coordinates of the "event"
- Space and time merge together into a four-dimensional "world"

\# Speed of light in vacuum is an invariant.

 Therefore, c is a fundamental constant.\# Two events simultaneous in one frame may occur at different times in another frame.
\# The space coordinates and the time coordinate get mixed up by the Lorentz transformations, when one goes from one frame to anothes that is moving with a relative velocity.
\# No object with a real and positive rest mass can move faster than the speed $\mathrm{c}=$ 3 times $10 \wedge 10 \mathrm{~cm} / \mathrm{s}$.
\# There cannot be a perfect rigid body.
\# Energy is equivalent to inertial mass ($\mathrm{E}=\mathrm{mc}^{\wedge}$ ^2)
\# Time dilation and length contraction due to the factor (1$\left.\mathrm{v}^{\wedge} 2 / \mathrm{c}^{\wedge} 2\right)^{\wedge}(1 / 2)$
\# Time span of THIS TALK/ undergoes a relativistic STRETCHING by a factor of 2 .

Special Relativity

Galileo's relativity

$$
\begin{array}{ll}
t^{\prime}=y\left(t-v \gamma / c^{2}\right) & t^{\prime}=t \\
x^{\prime}=y(x-v t) & x^{\prime}=x-v t \\
y^{\prime}=y & y^{\prime}=y \\
z^{\prime}=z & z^{\prime}=z
\end{array}
$$

$$
m=\frac{m_{o}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

Lorentz gamma factor $=\left(1-v^{\wedge} 2 / c^{\wedge} 2\right)^{\wedge}(-1 / 2)$

$$
\begin{gathered}
x^{\prime}=\gamma(x-v t) \\
y^{\prime}=y \\
z^{\prime}=z \\
t^{\prime}=\gamma\left(t-\frac{v}{c^{2}} x\right)
\end{gathered}
$$

Where γ is defined as

$$
m=\frac{m_{o}}{\sqrt{1-\frac{1}{\sqrt{1-\frac{v^{2}}{e^{2}}}}}} \sqrt{c^{2}}
$$

Special Relativity

$$
\beta=\frac{v}{c} \quad \gamma=\frac{1}{\sqrt{1-}}
$$

At $v=0.42 c, \gamma=1.10$, which means the effects of Relativity become noticeable.

Length contraction

$$
L^{\prime}=\frac{I_{0}}{\gamma}
$$

Time dilation

$$
t^{\prime}=\gamma t
$$

Euclidean Geometry:

$$
\begin{aligned}
& \#(\text { length })^{\wedge} 2=(\text { sigma })^{\wedge} 2= \\
& \left(x 1-x^{2}\right)^{\wedge} 2+\left(y 1-y^{2}\right)^{\wedge} 2+\left(z 1-z^{2}\right)^{\wedge} 2,
\end{aligned}
$$

where ($\mathrm{x} 1, \mathrm{y} 1, \mathrm{z} 1$) and ($\mathrm{x} 2, \mathrm{y} 2, \mathrm{z} 2$) are the coordinates of the two points in 3 D space.
\# Length is invariant under translations and rotations of 3 D coordinate system.

Special relativity:

\# The proper interval between two events is defined by

$$
\begin{gathered}
(s 1-s 2)^{\wedge 2}=c \wedge 2(t 1-t 2)^{\wedge} 2-(x 1-x 2)^{\wedge} 2-(y 1- \\
\\
y 2)^{\wedge} 2-(z 1-z 2)^{\wedge} 2,
\end{gathered}
$$

$$
\text { or, }-(s 1-s 2)^{\wedge} 2=-c \wedge 2(t 1-t 2)^{\wedge} 2+(x 1-x 2)^{\wedge} 2+/
$$

$$
(y 1-y 2)^{\wedge} 2+(z 1-z 2)^{\wedge} 2,
$$

where ($\mathbf{t}, \mathrm{x} 1, y 1, \mathrm{z} 1$) and ($\mathrm{t} 2, \mathrm{x} 2, \mathrm{y} 2, \mathrm{z} 2$) are the coordinates of the two events.
\# The proper interval is invariant under Lorentz transformations, space-time translations as well as rotations in 3D space.
\# Note that (s 1 - s 2$)^{\wedge}$ 2 can be negative for a pair of events! Such events are necessarily causally disconnected. \# If we consider two events separated infinitesimally, (t, x, y, z) and ($\mathrm{t}+\mathrm{dt}, \mathrm{x}+\mathrm{dx}, \mathrm{y}+\mathrm{dy}, \mathrm{z}+\mathrm{dz}$), then the interval becomes

$$
\begin{gathered}
d s^{\wedge} 2=c^{\wedge} 2 d t \wedge 2-d x^{\wedge} 2-d y^{\wedge} 2-d z^{\wedge} 2 . \\
\text { or, } \quad-d s^{\wedge} 2=d x^{\wedge} 2+d y^{\wedge} 2+d z^{\wedge} 2-c^{\wedge} 2 d t t^{\wedge} 2
\end{gathered}
$$

This "distance" formula is called the Minkowski lineelement and the corresponding four-dimensional "world" is called the Minkowski space-time or just the Minkowski space.

Minkowski: "Henceforth space by itself, and time by itself/are doomed to fade away into mere shadows, and only a kind of union of the two will preserve an independent reality."

Imaginary time?

Use "i t" instead of "t" !

$$
\begin{aligned}
-d s^{\wedge} 2 & =d x^{\wedge} 2+d y^{\wedge} 2+d z^{\wedge} 2-c^{\wedge} 2 d t \wedge 2 \\
& =d x^{\wedge} 2+d y^{\wedge} 2+d z \wedge 2+d(i c t)^{\wedge} 2
\end{aligned}
$$

Graffiti in I.I.Sc., Bangalore (~ 1981): Person A: Einstein had an i on time. Person B: i c.

Einstein's relativistic theory of GRAVITATION is based on the EQUIVALENCE PRINCIPLE:

\# Inertial Mass = Gravitational Mass (Galileo, Eotvos,TIFR-Gauribidnur,....)
\# Gravitational force disappears in a frame of reference that freely falls in a gravitational field (Einstein: ".... happiest day of my life")
\# Or, equivalently, in free space (i.e. zero gravity condition), one can simulate a gravitational field by going to an accelerating frame

GENERAL THEORY OF RELATIVITY

Salient features:

\# Gravity is not a force
\# The apparent gravitational effects are due to Non-Euclidean nature of space-time geometry \# Presence of matter makes the geometry curved \# GRAVITY is equivalent to space-time GEOMDETRY

GENERAL THEORY OF RELATIVITY

\# Geometry is characterized by 10 functions of space and time called the metric tensor g_ij
\# Proper interval, ds^2 = g_ij dxi dxj, (i,j summed over from 0 to 3)
(Special Relativity: ds^2=n_ij dxi dxj)
\# x 0 is time coordinate, and $\mathrm{x} 1, \mathrm{x} 2$ and $\times 3$ are the spatial coordinates
\# The metric is determinedusing the Einstein equation

Consequences of GTR:

\# Redshifting of light \rightarrow (Test of Equivalence Principle) (Time runs slower in stronger gravity) \# Bending of light \rightarrow. Gravitational Lensing
\# Lense - Thirring Precession \rightarrow Precession of Gyroscopes
\# Gravitational Waves \rightarrow Hulse-Taylor binaries, LIGO, LISA
\# Blackholes ${ }^{-}$- X-raysoturces, supermassive BHs
\# Big-bang model

Bending of Light

The Bending of Light

 space-time is warped.

General Relativity: Light travels along the curved space taking the shortest path between two points. Therefore, light is deflected toward a massive object! The stronger the local gravity is, the greater the light path is bent.

Einstein Equation

$$
R_{j}-\frac{1}{2} R_{j}-g_{j}=\frac{B \pi G}{c^{4}} T
$$

$T_{-} \mathbf{i j}$ is the energy-momentum tensor of matter.
Lambda is the Cosmological Constant.

Coalescing

Binary neutron

Stars:

Short duration

GRBs ?

SUPERNOVA EXPLOSION

BASICSTRUCTURE

54BHHARTMHi4
Mntuls

+5-F

IHGLLHAMTH

EVENT HORIZON

energy

density energy flux

T_{10}
T_{20}
T_{30}
$T_{11} \quad T_{12} \quad T_{13}$
$T_{21} \quad T_{22} \quad T_{23}$
$T_{31} \quad T_{32} \quad T_{33}$--pressure
momentum momentum density


```
\(g_{\mu v}=\eta_{\mu v}+h_{\mu v}\)
```


3C454.3

Quasar

Gravitational Lens in Abell 2218

HST • WFPC2
PF95-14 - ST Scl OPO • April 5, $1995 \cdot$ W. Couch (UNSW), NASA

（雨

Geometry for homogeneous and isotropic space-time:
$d s^{2}=c^{2} d t^{2}-d^{2}(t)\left[d x^{2}+f(x)^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right]$
$d s^{2}=(c d t)^{2}-R^{2}(t)\left[d \chi^{2}+S_{k}^{2}(\chi)\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right]$
Geometry around a spherically symmetric mass distribution:
$d s^{2}=c^{2}\left(1-\frac{2 G M}{r c^{2}}\right) d t^{2}-\quad(4-30)$

$$
\frac{d r^{2}}{1-\frac{2 G M}{r c^{2}}}-r^{2}\left(d^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

Possible Models of the Expanding Universe

Big
Bang
Time

10^{+4} s	10^{-35}	10^{32} \%	$10^{-10} 3$	300%	$3 \times 10^{5} \mathrm{ys}$	$1 \times 10^{9} \mathrm{yz}$	$15 \times 10^{9} \mathrm{ym}$
$\begin{aligned} & \text { Superstring (?) } \\ & \text { Era } \end{aligned}$	$\begin{aligned} & \hline \text { GTT } \\ & \text { Era } \end{aligned}$	Inflaticn Era	Electro-wedk Era	Fartole Era	$\begin{gathered} \text { Phoombination } \\ \text { Era } \end{gathered}$	Galaxy and Star Formation	Fresent Era

$\sqrt{6+\infty}$

$d^{\wedge} \wedge 2=c^{\wedge} 2 d t \wedge 2-\left(d x^{\wedge} 2+d y \wedge 2+d z \wedge 2\right)$ for an empty universe. The curvature is zero every where.

BUT
If matter is distributed homogeneously and isotropically:

$$
d s^{2}=c^{2} \mathrm{~d} t^{2}-R^{2}(t) \quad \times
$$

$$
\begin{equation*}
\left(\frac{\mathrm{d} \sigma^{2}}{\left(1-k \sigma^{2}\right)}+\sigma^{2} \mathrm{~d} \theta^{2}+\sigma^{2} \sin ^{2} \theta \mathrm{~d} \phi^{2}\right) \tag{1}
\end{equation*}
$$

$\mathbf{R}(\mathbf{t})=$ Expansion scale factor.
(1) $k=0$ (Flat model or Einstein-de Sitter universe) $d^{\wedge}{ }^{2} 2=c^{\wedge} 2 d t \wedge 2-R^{\wedge} 2(d x \wedge 2+d y \wedge 2+d z \wedge 2)$
(2) $k=+1$ (Closed universe)
(3) $k=-1$ (Open universe)

$$
\mathbb{F}^{3}
$$

TIME's riddle:

\# Arrow of time \rightarrow Entropy, Psychological, ...
\# Is "it" more fundamental than "t"?
\# Time machine \rightarrow Exotic matter with negative energy density, wormholes
\# Is there a censorship on "closed time-like trajectories"? \rightarrow Chronology Protection surmise \# Time evolution and unitarity \rightarrow Blackhole information puzzle

TIME'S ARROW:

* For a system in thermodynamic equilibrium, there is NO arrow of time
* In the absence of thermodynamic equilibrium, the state of the system evolves in time, while entropy keeps increasing
* The conjecture that universe was created in a state far removed from thermodynamic equilibrium, in alow entropy state
* Galaxies, stars, complex structures, iiving systems etc. form, as time evolves to make entropy increase globally

Alexander (GUY PEARCE) and the Uber: Morlock (leremy Hons) engnge in a Me-and-desth struggle in DreamWorks Pktures' and Warner Bros. Plctures' THE TIME MACHINE
Photo: Courtesy DreamWorks

DAWN
TIME

tiny fraction

 of a secondinflation

$$
\begin{gathered}
380,000 \\
\text { years }
\end{gathered}
$$

Life would be indefinitely happier if we could only be born at the age of eighty and gradually approach eighteen.
---- Mark Twain

Discovery of Cosmic Background

Spectrum df the Cosmic Micrdwave Background

Frequency (GHz)

Distant Supernovae and the Accelerating Universe

- If the Universe is expanding at a constant rate, one can predict how bright distant supernovae should seem
- In 1998, astronomers discovered distant supernovae were too faint!

The cosmological constant, \wedge, is a form of energy density which is inherent in "empty space", remaining constant as the universe expands.

The only effects of this vacuum energy are on gravity, as reflected in Einstein's equations:

$$
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}+\wedge g_{\mu \nu}=8 \pi G T_{\mu \nu}^{\text {matter }}
$$

or

$$
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}=8 \pi G\left(T_{\mu \nu}^{\text {matter }}+T_{\mu \nu}^{\text {vacuum }}\right)
$$

corresponding to a vacuum energy density

$$
\rho_{\Lambda}=\frac{\wedge}{8 \pi G}
$$

Accelerating Universe:
\# In general relativity, pressure of matter is also a source of space-time curvature
\# Matter with "weird" equation of state: Quintessence
Pressure = w . Energy density,

$$
\text { with } \mathrm{w}<0
$$

\# Negative pressure leads to repulsive gravity
\# For the cosmological constant:
Pressure = - Energy density

The dark energy equation of state

- Dark energy equation of state: $w(z) \equiv p / \rho$
$-\rho(z) \propto(1+z)^{n}$ with $\mathrm{n} \equiv 3(1+w)$;
- cosmological constant has $\boldsymbol{w}=-1$ and $n=0$.
- The combined constraint on $\langle w\rangle$, assuming a flat universe, from the $C M B$ and $2 d F G R S$ power spectra plus the HST key project H_{O}, is: $\langle w\rangle \leq-0.52$ (95% c.l.)
- With the WMAP data: $\langle w\rangle \leq-0.78$ (95% c.l.)

average distance between galaxies

Copyright © Addison Wesley.

Effect of Baryon-Density

Measuring Cosmological Parameters

> SNAP will measure Ω_{Λ} and Ω_{M} to unprecedented precision.
$>$ Together Ω_{Λ} and Ω_{M} determine Ω_{T}.
>SNAP will also measure the equation of state $\mathrm{w}=\mathrm{p} / \mathrm{\rho}$.
$>$ More importantly, SNAP will measure the variation of w with time (redshift)

The Cosmic Pyramid

