



# Status of the search for Gravitational Waves

- Gravitational waves
- Detection of GW's
- The LIGO project and its sister projects
- Astrophysical sources
- Recent results
- Conclusions

# No discovery to report here!

Alan Weinstein, Caltech

for the LIGO Scientific Collaboration



"Merging Neutron Stars" (Price & Rosswog)



Fig. 1.1 - LIGO detector with 4 km arms at Livingston, Louisiana



Fig. 1.2 - Virgo Detector, with 3 km arms, at Cascina, near Pisa





The Study of gravitational waves is at the *frontiers* of science in at least four different fields:

- General Relativity (GR) physics at the extremes: strong (non-linear) gravity, relativistic velocities
- Astrophysics of compact sources neutron stars, black holes, the big bang – the most energetic processes in the universe
- Interferometric gravitational wave detectors the most precise measuring devices ever built
- GW data analysis the optimal extraction of the weakest signals possible out of noisy data.





## **Gravitational Waves**

Static gravitational fields are described in General Relativity as a curvature or warpage of space-time, changing the distance between space-time events.



Shortest straight-line path of a nearby test-mass is a ~Keplerian orbit.

If the source is moving (at speeds close to c), *eg,* because it's orbiting a companion, the "news" of the changing gravitational field propagates outward as gravitational radiation – a wave of spacetime curvature







### Nature of Gravitational Radiation

General Relativity predicts that rapidly changing gravitational fields produce ripples of curvature in fabric of spacetime

• Stretches and squeezes space between

"test masses" – strain  $h = \Delta L / L$ 

- propagating at speed of light
  - mass of graviton = 0
- space-time distortions are transverse to direction of propagation
- GW are tensor fields (EM: vector fields) two polarizations: plus (⊕) and cross (⊗) (EM: two polarizations, *x* and *y*) *Spin of graviton = 2*



 $h = \Delta L / L$ 

Contrast with EM dipole radiation:  

$$\hat{x} (( \longrightarrow )) \quad \hat{y} \quad \bigcup$$







# Sources of GWs

- Accelerating charge  $\Rightarrow$  electromagnetic radiation (dipole)
- Accelerating mass 
   ⇒ gravitational radiation (quadrupole)
- Amplitude of the gravitational wave (dimensional analysis):

$$h_{\mu\nu} = \frac{2G}{c^4 r} \ddot{I}_{\mu\nu} \implies h \approx \frac{4\pi^2 GMR^2 f_{orb}^2}{c^4 r}$$

- I<sub>µv</sub> = second derivative of mass quadrupole moment (non-spherical part of kinetic energy – tumbling dumb-bell)
- *G* is a small number! (space-time is *stiff*).
- Waves can carry huge energy with minimal amplitude
- Need huge mass, relativistic velocities, nearby.
- For a binary neutron star pair, 10m light-years away, solar masses moving at 15% of speed of light:

Energy-momentum conservation: energy cons  $\Rightarrow$  no monopole radiation momentum cons  $\Rightarrow$  no dipole radiation  $\Rightarrow$  lowest multipole is quadrupole wave



### **Terrestrial sources TOO WEAK**!

# **LIGO** Indirect Evidence for GWs from Hulse-Taylor binary



### emission of gravitational waves by compact binary system



- Merger in about 300M years (<< age of universe!)</p>
- GW emission will be strongest near the end Coalescence of black holes!





### A NEW WINDOW ON THE UNIVERSE



The history of Astronomy: new bands of the EM spectrum opened  $\rightarrow$  major discoveries! GWs aren't just a new band, they're a new spectrum, with very different and complementary properties to EM waves.

- Vibrations of space-time, not in space-time
- Emitted by coherent motion of huge masses moving at near light-speed; not vibrations of electrons in atoms
- Can't be absorbed, scattered, or shielded.

GW astronomy is a totally new, unique window on the universe





# Interferometric detection of GWs







# **Interferometric GW detectors**

- Quadrupolar radiation pattern
- Michelson interferometer "natural" GW detector
- Suspended mirrors in "free-fall"
- Broad-band response ~50 Hz to few kHz
- Waveform detector e.g., chirp reconstruction
- $h = \Delta L / L$ Goal: get  $h \le 10^{-22}$ ;

can build L = 4 km; must measure  $\Delta L = h L \le 4 \times 10^{-19}$  m











### **Global network of interferometers**







# Event Localization With An Array of GW Interferometers







# Frequency range of GW Astronomy

### Electromagnetic waves

- over ~16 orders of magnitude
- Ultra Low Frequency radio waves to high energy gamma rays

### Gravitational waves

- over ~8 orders of magnitude
- Terrestrial + space detectors





### LIGO **The Laser Interferometer Space Antenna** LISA Three spacecraft in orbit The center of the triangle formation about the sun, will be in the ecliptic plane 1 AU from the Sun and 20 degrees with 5 million km baseline behind the Earth. $5 \times 10^{6} km$ Earth relative orbit 5,000,000 km of spacecraft Spacecraft #3 Spacecraft #2 Sun Venus Mercury Spacecraft #1

LISA (NASA/JPL, ESA) may fly in the next 10 years!





### **Cryogenic Resonant detectors**

### Explorer (at CERN) Univ. of ROME ROG group



### AURIGA, LNL (Padova)



Nautilus (at Frascati) Univ. of ROME ROG group



### sensitivity: h<sub>rms</sub>~ 10<sup>-19</sup>; excellent duty cycle

### ALLEGRO, LSU (Baton Rouge)







### LIGO: Laser Interferometer Gravitational-wave Observatory





Hanford, WA 4 km (H1) + 2 km (H2)

> 4 km L1 Livingston, LA















### Strain Sensitivity for the LIGO 4km Interferometers







# $\text{LIGO} \rightarrow \text{eLIGO} \rightarrow \text{AdvLIGO}$





### What will we see?









Analog from cosmic microwave background --WMAP 2003



GWs from the most energetic processes in the universe!

- Compact Binary Coalescences: black holes orbiting each other and then merging together
- GW bursts of unknown waveform: Supernovas, SGRs, GRB engines
- Continuous waves from pulsars, rapidly spinning neutron stars
- Stochastic GW background from vibrations from the Big Bang





# Frequency-Time Characteristics of GW Sources













## **Binary Inspiral Phases**



AJW, SURF 2008





# The sound of a chirp



AJW, SURF 2008



# Astrophysical sources: Thorne diagrams



Sensitivity of LIGO to coalescing binaries





### Understanding Inspiral-Merger-Ringdown



- The key to optimal detection is a well-modeled waveform, especially the phase evolution
- Low-mass systems (BNS) merge above ~1500 Hz, where LIGO noise is high - we see the inspiral
- Higher-mass systems (BBH) merge or ring down in-band.
- These systems are unique: highly relativistic, dynamical, strong-field gravity – exactly where Einstein's equations are most non-linear, intractable, interesting, and poorly-tested.
- Numerical relativity is devoted to deriving waveforms for such systems, to aid in detection and to test our understanding of strong-field gravity.
- HUGE progress in the last few years!



### 







### Mass space for template-based search

- The more massive the system, the lower the GW frequency
- Binary neutron star (BNS) waveforms are in LIGO band during inspiral.
- Higher-mass Binary black hole (BBH) waveforms merge in-band
- •Above ~100 M<sub>sun</sub>, all LIGO can see is the merger and ringdown







# **Illustration of Matched Filtering**







### Horizon distance is a strong function of mass

Horizon distance (Mpc) versus mass (M<sub>sun</sub>) Inspiral-Merger-Ringdown Initial LIGO

Horizon Distance vs Total Mass



### Horizon distance (Mpc) versus mass ( $M_{sun}$ ) for ringdowns iLIGO $\Rightarrow$ eLIGO $\Rightarrow$ aLIGO







# Expected detection rate: How many sources can we see?

- CBC waveforms have known amplitude  $h \sim (GM/c^2r) \times F(\alpha, \delta, \iota)$
- Measured detector sensitivity defines a *horizon distance*
- This encloses a known number of sources: MWEG =  $1.7 \times 10^{10} L_s = 1.7 L_{10}$
- From galactic binary pulsars: R(BNSC) ~10-170 /Myr/L<sub>10</sub>
- From population synthesis: R(BBHC) ~0.1 - 15 /Myr/L<sub>10</sub>
- To see more than 10 events/yr, we need to be sensitive to 10<sup>5</sup> - 10<sup>7</sup> galaxies!





# **S5 upper limits**



### compact binary coalescence

Rate/year/ $L_{10}$  vs. binary total mass  $L_{10} = 10^{10} L_{sun,B}$  (1 Milky Way = 1.7  $L_{10}$ )

arXiv:0905.3710v1

20

25

30

35

Dark region excluded at 90% confidence. 



| Binary type | Our upper limit,<br>90% confidence,<br>L <sub>10</sub> <sup>-1</sup> yr <sup>-1</sup> | Astrophysical<br>Optimistic Rates,<br>L <sub>10</sub> <sup>-1</sup> yr <sup>-1</sup> | Astrophysical<br>most likely Rates,<br>L <sub>10</sub> <sup>-1</sup> yr <sup>-1</sup> | Comparison  |
|-------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------|
| BNS         | 1.4 x 10 <sup>-2</sup>                                                                | 5 x 10 <sup>-4</sup>                                                                 | 5 x 10 <sup>-5</sup>                                                                  | ~2-3 orders |
| NSBH        | 3.6 x 10 <sup>-3</sup>                                                                | 6 x 10 <sup>-5</sup>                                                                 | 2 x 10 <sup>-6</sup>                                                                  | ~2-3 orders |
| BBH         | 7.3 x 10 <sup>-4</sup>                                                                | 6 x 10 <sup>-5</sup>                                                                 | 4 x 10 <sup>-7</sup>                                                                  | ~1-3 orders |





# Triggered searches: GRB 070201

- Feb 1, 2007: short hard GRB (T<sub>90</sub>=0.15 s)
- Observed by five spacecraft
- Location consistent with M31 (Andromeda) spiral arms (0.77 Mpc)
- At the time of the event, both Hanford instruments were recording data (H1, H2), while others were not (L1, V1, G1)
- Short GRB: could be inspiral of compact binary system (NS/BH), or perhaps soft gamma repeater

talk by Isabel Leonor in Multimessenger Astronomy parallel session







### Inspiral search - GRB 070201

- Matched template analysis,  $1M_{\odot} < m_1 < 3M_{\odot}$ ,  $1M_{\odot} < m_2 < 40M_{\odot}$
- H1 ~ 7200 templates, H2 ~ 5400 templates, obtain filter SNR
- Require consistent timing and mass parameters between H1, H2
- Also searched for using burst (coherent excess power) methods







### GW Bursts from core collapse supernova



- Within about 0.1 second, the core collapses and gravitational waves are emitted.
- After about 0.5 second, the collapsing envelope interacts with the outward shock. Neutrinos are emitted.
- Within 2 hours, the envelope of the star is explosively ejected. When the photons reach the surface of the star, it brightens by a factor of 100 million.
- Over a period of months, the expanding remnant emits X-rays, visible light and radio waves in a decreasing fashion.

# LIGO Untriggered GW burst search in S5 1<sup>st</sup> year data



"38

• Look for short, unmodeled GW signals in LIGO's frequency band

- -From stellar core collapse, compact binary merger, etc. or unexpected source
- Look for excess signal power and/or cross-correlation from different detectors
- No events observed above thresholds



- 100/100 solar mass BH/BH merger detectable out to 180 Mpc
- Core collapse supernova models detectable out to 0.6-24 kpc





### GRB-triggered searches in LIGO S5 / Virgo VSR1 data

- Nov 2005 Oct 2007: 212 GRBs
  - 137 with 2+ LIGO-Virgo detectors operating.
  - ~25% with redshift ~10% short duration
- Polarization-averaged antenna response of LIGO-Hanford
  - dots show location of GRBs during S5-VSR1



No significant GW signals found within ~180s of and GRB talk by Isabel Leonor in Multimessenger Astronomy parallel session





# Low-latency searches during S6/VSR2

- Enhanced LIGO S6 & Virgo VSR1 began July 6, 2009.
- A major goal is to identify GW inspiral or burst signals within minutes of detecting them.
- With three detector sites, locate sources to ~ 10 sqdg.
- Alert ground- and spaced-based telescopes to point at presumed source location.
- Unlikely to actually detect a GW and associate it with EM counterpart ... this is just practice, and maybe we'll get very lucky!
- Also receive alerts via SNEWS and SGR, GRB detectors
  - » Goal Identification of GW signal within ~ 1 day of receipt of external trigger



http://gcn.gsfc.nasa.gov/

### talk by Isabel Leonor in Multimessenger Astronomy parallel session





### Pulsars and continuous wave sources

 $f_{GW} = 2f_{ROT}$ 

### Pulsars in our galaxy

- » non axisymmetric:  $10^{-4} < \epsilon < 10^{-6}$
- » science: EOS; precession; interiors

Oscillating star

- » "R-mode" instabilities
- » narrow band searches best

$$h = \frac{4\pi^2 G}{c^4} \frac{I_{zz} f_{GW}^2}{r} \varepsilon$$





#### Sensitivity of LIGO to continuous wave sources







# The Crab pulsar

- PSR B0531+21; SN 1054AD; ~2 kpc away ; spinning at 29.8 Hz.
- Spinning down rapidly; energy loss ~ 4  $\times$  10<sup>31</sup> W
  - A significant fraction of that could be going into GWs @ 59.6 Hz
  - Searched for signal in first 9 months of LIGO S5 data. using timing data from Jodrell Bank Observatory
  - Assuming that GW signal is locked to EM pulses, null search result implies that no more than <sup>10<sup>23</sup></sup>
     **4–6%** of the spin-down energy is in GW emission
  - Crab pulsar is spherical; ε < 1.4 × 10<sup>-4</sup>
     (1/10 of Mt Everest)

Spin-down limit:  $h_{\rm sd} = \left(\frac{5}{2} \frac{GI_{zz}|\dot{\nu}|}{c^3 r^2 \nu}\right)^{1/2}$ 





Abbott et al., ApJL 683, L45







### Search for known pulsars- preliminary

Search for signals from 116 pulsars (including binaries) with  $f_{GW} > 40$  Hz. **NO SIGNALS SEEN** above Gaussian noise in 3 LIGO detectors. Joint 95% upper limits using data from the LIGO S5 run:







# All sky searches

- Most spinning neutron stars are not observed pulsars; EM dim and hard to find.
- But they all emit GWs in all directions (at some level)
- Some might be very close and GW-loud!
- Must search over huge parameter space:
  - » sky position: 150,000 points @ 300 Hz, more at higher frequency or longer integration times
  - » frequency bins: 0.5 mHz over hundreds of Hertz band, more for longer integration times
  - » df/dt: tens(s) of bins
- Computationally limited! Full coherent approach requires ~100,000 computers (Einstein@Home)

# Einstein@Home: the Screensaver

- GEO-600 Hannover —
- LIGO Hanford
- LIGO Livingston
- Current search point
- Current search coordinates
- Known pulsars,
- Known supernovae remnants

- User name
- User's total credits
- Machine's total credits
- Team name
- Current work % complete







#### Einstein@Home - Server Status

Einstein@Home server status as of 8:49 PM UTC on Tuesday, 7 October 2008 (updated every 20 minutes). The Einstein@Home main server has been continuously up for 65 days 7 hours 33 minutes.

#### Server status

| Program                      | Host     | Status  |
|------------------------------|----------|---------|
| Web server                   | einstein | Running |
| BOINC database<br>feeder     | einstein | Running |
| BOINC transitioner           | einstein | Running |
| BOINC scheduler              | einstein | Running |
| BOINC file uploads           | einstein | Running |
| Einstein S5R2<br>validators  | einstein | Running |
| Einstein S5R3<br>validators  | einstein | Running |
| Einstein S5R4<br>validators  | einstein | Running |
| Einstein S5R2<br>assimilator | einstein | Running |
| Einstein S5R3<br>assimilator | einstein | Running |
| Einstein S5R4<br>assimilator | einstein | Running |
| BOINC file deleter           | einstein | Running |
| BOINC database               | einstein | Running |

#### Download mirror status

| Site                            | Status         | Last failure      |
|---------------------------------|----------------|-------------------|
| Albert Einstein Institute       | Running        | 153 h 43 m<br>ago |
| University of Glasgow LSC group | Running        | 151 h 44 m<br>ago |
| MIT LIGO Lab                    | Not<br>running | 1 h 19 m ago      |
| Penn State LSC group            | Running        | 15 h 19 m<br>ago  |
| Caltech LIGO Lab                | Running        | None              |

#### S5R4 search progress

| Total needed        | Already done       | Work still<br>remaining   |
|---------------------|--------------------|---------------------------|
| 12,104,080<br>units | 1,753,310<br>units | 10,350,770 units          |
| 100 %               | 14.485 %           | 85.515 %                  |
| 442.1 days          | 64.0 days          | 378.1 days<br>(estimated) |

#### Users and Computers

| USERS                              | Approximate<br># |
|------------------------------------|------------------|
| in database                        | 348.417          |
| with credit                        | 210,758          |
| registered in past 24<br>hours     | 219              |
| HOST COMPUTERS                     | Approximate<br># |
| in database                        | 1,373,249        |
| registered in past 24<br>hours     | 1,044            |
| with credit                        | 694,247          |
| active in past 7 days              | 65,436           |
| floating point speed <sup>1)</sup> | 107.5 TFLOPS     |

#### Work and Results

| WORKUNITS               | Approximate<br># |
|-------------------------|------------------|
| in database             | 402,319          |
| with canonical result   | 169,610          |
| no canonical<br>result  | 232,709          |
| RESULTS                 | Approximate<br># |
| in database             | 960,965          |
| unsent                  | 137,942          |
| in progress             | 167,333          |
| deleted                 | 362,616          |
| valid                   | 340,158          |
| valid last week         | 238,386          |
| invalid                 | 66               |
| Oldest Unsent<br>Result | 11 d 10 h 51 m   |





### Einstein@Home results from early-S5 "all sky" search

### **Strain sensitivity of search**



Results: No significant signals in full frequency band and sky location







# Gravitational waves from Big Bang







### LIGO limits and expectations on $\Omega_{\text{GW}}$







# Upper limit map of a stochastic GW background

- S4 data- 16 days of 2 site coincidence data
- Get positional information from sidereal modulation in antenna pattern and time shift between signals at 2 separated sites
- No signal was seen.
- Upper limits on broadband radiation source strain power originating from any direction.

 $(0.85-6.1 \times 10^{-48} (Hz^{-1})$  for min-max on sky map; flat source power spectrum)



Phys.Rev.D76:082003,2007



E.S. Phinney Texas06, 11 Dec 2006





# Ultimate Goals for the Observation of GWs

- Tests of General Relativity Gravity as space-time curvature
  - Wave propagation speed (delays in arrival time of bursts)
  - Spin character of the radiation field (polarization of radiation from sources)
  - Detailed tests of GR in P-P-N approximation (chirp waveforms)
  - Black holes & strong-field gravity (merger, ringdown of excited BH)
- Gravitational Wave Astronomy (observation, populations, properties of the most energetic processes in the universe):
  - Compact binary inspirals
  - Gamma ray burst engines
  - Black hole formation
  - Supernovae in our galaxy
  - Newly formed neutron stars spin down in the first year
  - Pulsars, rapidly rotating neutron stars, LMXBs
  - Stochastic background





### Plans for the future: GWIC Roadmap







# Summary

- An international network of ground-based GW detectors is taking shape.
- LIGO's first long science run (S5) at design sensitivity completed in 2007
  - » No detections to report yet but there may be some in the can!
  - » LIGO searches producing some interesting upper limits
- VIRGO, GEO, TAMA and CLIO approaching design sensitivity
- Enhanced LIGO (S6) and Virgo (VSR2) science runs began July 7, 2009
- Advanced LIGO is funded and in construction, first observations in ~2014
  - » Sensitivity/range will be increased by a factor of 10-15
  - » We expect to found the field of GW astrophysics with advanced detectors
- LISA (ESA, NSF) recommended for Beyond Einstein flagship mission
  - » LISA Pathfinder mission will launch in 2011
  - » Japanese DECIGO Pathfinder mission aims for launch in 2013
- Detections, and the exploration of the universe with GWs, will begin over the next decade!

