A Rough Guide to Gravitational Radiation

Achamveedu Gopakumar

Tata Institute of Fundamental Research, Mumbai

First IndIGO School on Gravitational Wave Astronomy, Delhi University, 13-24 December 2010

★ ∃ >

Outline

Aim is to provide an introduction to Gravitational Waves (GWs) without using General Relativity

- What are GWs ?
- Rough estimates for GW amplitude & luminosity associated with two promising sources
- How does the emission of GWs affect its source ?

GWs: I

General Relativity (GR) defines GWs as ripples in the curvature of space-time that propagate with the speed of light !

It is possible to **COMPUTE** most of the crucial effects of GWs using Newtonian Gravitational Theory, Classical Electrodynamics & some elements of Special Relativity

(日) (同) (三) (三)

GWs: I

General Relativity (GR) defines GWs as ripples in the curvature of space-time that propagate with the speed of light !

It is possible to **COMPUTE** most of the crucial effects of GWs using Newtonian Gravitational Theory, Classical Electrodynamics & some elements of Special Relativity

• Newtonian gravity involves a scalar potential $\phi_N(\mathbf{x}, t)$ such that $\nabla \phi_N = 4 \pi G \rho$, such that

$$\phi_{\rm N}(\mathbf{x},t) = -G \int \frac{\rho(\mathbf{y},t)}{r} d^3 y \,, \ r \equiv |\mathbf{x} - \mathbf{y}| \tag{1}$$

A change in $\phi_N(\mathbf{x}, t)$ due to a change in $\rho(\mathbf{y}, t)$ propagate instantaneously

• Special Relativity demands that no information should be able to propagate faster than c: the speed of light

Primer to GWs

GWs: II

٥

To make ϕ_{N} consistent with Special Relativity, we modify it

$$\phi_{\rm R}(\mathbf{x},t) = -G \int \frac{\rho(\mathbf{y},t-\frac{r}{c})}{r} d^3y$$
(2)

Dominant effects of GWs can be deducted from such a retarded gravitational potential

This simple insertion will help us to define GWs in a non-rigorous way

4 3 > 4 3

GWs: II

٥

To make ϕ_{N} consistent with Special Relativity, we modify it

$$\phi_{\rm R}(\mathbf{x},t) = -G \int \frac{\rho(\mathbf{y},t-\frac{r}{c})}{r} d^3y$$
(2)

Dominant effects of GWs can be deducted from such a retarded gravitational potential

This simple insertion will help us to define GWs in a non-rigorous way

- $\phi_{\rm R}$ satifies the scalar wave equation $\Box \phi_{\rm R} \equiv \left(\nabla^2 - \frac{\partial^2}{c^2 \partial^2 t} \right) \phi_{\rm R} = 4 \pi \, G \, \rho$
- ${\ensuremath{\, \circ }}$ Take the spatial gradient of $\phi_{\rm R}$

$$\boldsymbol{\nabla}\phi_{\mathrm{R}} = G \, \int \left(\frac{\rho}{r} - \frac{\partial\rho}{c\,\partial t}\right) \frac{\mathbf{x} - \mathbf{y}}{r^2} \, d^3 y \tag{3}$$

GWs: III

• If $|{\bf x}| \gg |{\bf y}_{\rm mx}|$, we have $r \sim |{\bf x}|$ & can negelct 1/r term in the previous Eq.

$$\mathbf{n} \cdot \nabla \phi_{\mathrm{R}} \sim \frac{\partial \phi_{\mathrm{R}}}{c \, \partial t}, \ \mathbf{n} = \mathbf{x} / |\mathbf{x}|$$

$$\phi_{\mathrm{R}} / \lambda \sim 1 / c \times \phi_{R} / T$$
(4)

 If we are far away from a GW source, the typical length scale over which φ_R varies is c × the typical time scale over which φ_R changes

- 4 同 ト 4 ヨ ト 4 ヨ ト

GWs: III

• If $|{\bf x}| \gg |{\bf y}_{\rm mx}|$, we have $r \sim |{\bf x}|$ & can negelct 1/r term in the previous Eq.

$$\mathbf{n} \cdot \nabla \phi_{\mathrm{R}} \sim \frac{\partial \phi_{\mathrm{R}}}{c \, \partial t}, \ \mathbf{n} = \mathbf{x} / |\mathbf{x}|$$

$$\phi_{\mathrm{R}} / \lambda \sim 1 / c \times \phi_{R} / T$$
(4)

- If we are far away from a GW source, the typical length scale over which φ_R varies is c × the typical time scale over which φ_R changes
- This is true for a wave traveling at speed *c* **This is our Gravitational Wave**
- Recall that $\phi_R \sim v^2$. Therefore, the amplitude of GW should be \sim

$$h \sim rac{\left(\text{time} - \text{dependent part of } \phi_R \right)}{c^2}$$
 (5)

An estimate for the dominate contribution to h: I

Consider a region $|\mathbf{x}| \gg |\mathbf{y}|b$ & we have far-zone expansion

$$1/r \equiv |\mathbf{x} - \mathbf{y}|^{-1} \sim \frac{1}{|\mathbf{x}|} + \mathbf{y} \cdot \mathbf{n} \, |\mathbf{x}|^{-2}$$
(6)

This leads to (if we neglect $\mathcal{O}(|\textbf{x}|^{-2})$ terms)

$$\phi_{\mathrm{R}} = -\frac{G}{|\mathbf{x}|} \int \rho(\mathbf{y}, t_r) \, d^3 y \,, \quad t_r = t - \frac{r}{c} \tag{7}$$

• Let $t_0 = t - rac{|\mathbf{x}|}{c}$ & this leads to $t_r \sim t_0 - \mathbf{y} \cdot \mathbf{n}/c$

• Expand $\rho(t_r)$ about t_0

$$\phi_R = \frac{-G}{|\mathbf{x}|} \left\{ \int \left[\rho(t_0) - \frac{\dot{\rho}}{c} \,\mathbf{n} \cdot \mathbf{y} + \frac{\ddot{\rho}}{2 \, c^2} \,\left(\mathbf{n} \cdot \mathbf{y}\right)^2 + \dots \right] d^3 y \right\}$$
(8)

An estimate for the dominate contribution to h: II

• First term

$$\int \rho(t_0) d^3 y \equiv M \tag{9}$$

• Let $\mathbf{v} = \frac{d\mathbf{y}}{dt}$; the second term involves

$$n_i \int \dot{\rho} y_i \, d^3 y = n_i \int \rho \, v_i \, d^3 y = \mathbf{n} \cdot \mathbf{P} \tag{10}$$

where ${\boldsymbol{\mathsf{P}}}$ is the conserved momentum of the source

An estimate for the dominate contribution to h: II

• First term

$$\int \rho(t_0) d^3 y \equiv M \tag{9}$$

• Let $\mathbf{v} = \frac{d\mathbf{y}}{dt}$; the second term involves

$$n_i \int \dot{\rho} y_i \, d^3 y = n_i \int \rho \, v_i \, d^3 y = \mathbf{n} \cdot \mathbf{P} \tag{10}$$

where ${\boldsymbol{\mathsf{P}}}$ is the conserved momentum of the source

• Third term contains

$$\int \ddot{\rho} \, y_i \, y_j \, d^3 \, y = \ddot{l}_{ij} \tag{11}$$

where $I_{ij}(t) \equiv \int \rho(t) y_i y_i d^3 y$ is the quadrupole moment of gravitating source & $\ddot{I}_{ij} = \int \rho v_i v_j d^3 y$

Retarded potential becomes

$$\phi_R \sim -\frac{G M}{|\mathbf{x}|} + \frac{G \mathbf{n} \cdot \mathbf{P}}{c |\mathbf{x}|} - \frac{G}{2 c^2} \frac{\tilde{I}_{ij} n_i n_j}{|\mathbf{x}|}, \qquad (12)$$

An estimate for the dominate contribution to h: III

• This leads to

$$h \sim \frac{G}{2 c^4} \frac{\ddot{l}_{ij} n_i n_j}{|\mathbf{x}|}$$
(13)

• Note that *h* depends only on the components of *l_{ij}* along **n**, the direction of propagation of the wave & this is due to the fact that we are dealing with **scalar waves**

An estimate for the dominate contribution to h: III

• This leads to

$$h \sim \frac{G}{2 c^4} \frac{\ddot{l}_{ij} n_i n_j}{|\mathbf{x}|}$$
(13)

- Note that *h* depends only on the components of *l_{ij}* along **n**, the direction of propagation of the wave & this is due to the fact that we are dealing with **scalar waves**
- In GR, GWs are *ripples in the curvature of space-time* & space-time & its disturbances are described by tensors

• $I_{ij} \rightarrow$ transverse components of trace-free tensor $\mathcal{I}_{ij} = I_{ij} - \frac{\delta_{ij}}{3} I_{kk}$

• In GR, we have

$$h_{ij}^{TT} = \frac{2 G}{c^4 r} \ddot{\mathcal{I}}_{ij}(t - r/c)$$
(14)

(日) (同) (三) (三)

This implies that spherically symmetric motion **WILL NOT** produce GWs. Any spherically symmetric tensor $\propto \delta_{ij}$ & hence \mathcal{I}_{ij} vanishes

An estimate for GW luminosity :I

 In classical ED, the dominant order multipole radiation from a charge distribution is the dipole radiation. The vector potential A_i in the wave-zone

$$A_j = \frac{1}{c r} \dot{d}_j(t_r) \tag{15}$$

The 1/r EM fields **E** & **B** depend only on the components of **d** transverse to **n**; $d_j^{\text{T}} \equiv P_{jk} d_k$, $P_{jk} = \delta_{jk} - n_j n_k$

• The Larmor formula provides the expression for EM luminosity

$$\mathcal{L}_{\rm EM} = \frac{2}{3 c^3} \ddot{d}_j \ddot{d}_j, \ d_j = e \, y_i \tag{16}$$

• For gravitating systems, linear & angular momenta provide electric & magnetic *type* dipole moments & they are conserved $\mu = \frac{1}{c} \sum_{a} \mathbf{y}^{a} \times \mathbf{d}^{a} = \frac{1}{c} \sum_{a} \mathbf{y}^{a} \times m_{a} \mathbf{v}^{a} = \frac{1}{c} \sum_{a} \mathbf{L}^{a}$

イロト 不得下 イヨト イヨト 二日

An estimate for GW luminosity :II

 $\mathcal{L}_{GW} \propto \binom{(3)}{l_{ij}} \binom{(3)}{l_{ij}} \&$ dimensional consideration require us to have G/c^5 • Explicit calculations in GR provides

$$\mathcal{L}_{GW} = \frac{G}{5 c^5} \mathcal{I}_{ij}^{(3)} \mathcal{I}_{ij}^{(3)}$$
(17)

(日) (同) (三) (三)

An estimate for GW luminosity :II

 $\mathcal{L}_{GW} \propto \begin{pmatrix} (3) & (3) \\ l_{ij} & l_{ij} \end{pmatrix} \&$ dimensional consideration require us to have G/c^5 • Explicit calculations in GR provides

$$\mathcal{L}_{GW} = \frac{G}{5 c^5} \mathcal{I}_{ij}^{(3)} \mathcal{I}_{ij}^{(3)}$$
(17)

•
$${}^{(3)}I_{ij} \sim M R^2 / T^3 \sim M V^3 / R$$

$$\mathcal{L}_{GW} \sim \frac{G}{c^5} (M/R)^2 V^6 \sim L_0 (r_{Sch}/R)^2 (V/c)^6$$
, (18)

where $L_0 = rac{c^5}{G} \sim 3.6 imes 10^{52} \, \text{J/s}$ & $r_{
m Sch} = G \, M/c^2$

• $\mathcal{L}_{\mathsf{G}W}$ is maximal if $R \sim r_{\mathrm{Sch}}$ & $V \sim c$

Compact objects, having time-dependent quadrupole moment, moving with velocities $\sim c$ are copious sources of GWs

イロト 不得下 イヨト イヨト 二日

How to detect GWs ?: I

• Recall that $h \sim \frac{G}{2c^4} \frac{\ddot{l}_{ij} n_i n_j}{|\mathbf{x}|} \& \ddot{l}_{ij} \sim \int \rho v_i v_j d^3 y \sim M \phi_{int}$ ϕ_{int} provides typical value for Newtonian potential inside the source • $GM \phi_{int} = \phi_N \phi_{int} = r_{Sch} v^2$

$$h \sim \frac{G M}{c^2 r'} \frac{\phi_{\text{int}}}{c^2} \sim \frac{\phi_{\text{N}}}{c^2} \frac{\phi_{\text{int}}}{c^2} \sim \frac{r_{\text{S}ch}}{r'} \frac{v^2}{c^2}$$
(19)

- h ≪ φ_N/c² and it is not possible to detect even a nearby star by measuring its φ_N!
- Recall that the acceleration **a** due to ϕ_N is $\sim \phi_N/|\mathbf{x}|$ However, **a** due to passing GW of amplitude *h* and wavelength λ is $\sim c^2 h/\lambda$

How to detect GWs ?: I

• Recall that $h \sim \frac{G}{2c^4} \frac{\ddot{l}_{ij} n_i n_j}{|\mathbf{x}|} \& \ddot{l}_{ij} \sim \int \rho v_i v_j d^3 y \sim M \phi_{int}$ ϕ_{int} provides typical value for Newtonian potential inside the source • $GM \phi_{int} = \phi_N \phi_{int} + v_2^2$

$$h \sim \frac{G M}{c^2 r'} \frac{\phi_{\text{int}}}{c^2} \sim \frac{\phi_{\text{N}}}{c^2} \frac{\phi_{\text{int}}}{c^2} \sim \frac{r_{\text{S}ch}}{r'} \frac{v^2}{c^2}$$
(19)

- h ≪ φ_N/c² and it is not possible to detect even a nearby star by measuring its φ_N!
- Recall that the acceleration **a** due to ϕ_N is $\sim \phi_N/|\mathbf{x}|$ However, **a** due to passing GW of amplitude *h* and wavelength λ is $\sim c^2 h/\lambda$
- $\bullet\,$ Entire Earth feels the above a & not possible to measure (Einstein's equivalence principle)

However, it is possible to measure difference in the above **a** across an experiment (Tidal force $\sim M/L^3$)

イロト 不得下 イヨト イヨト 二日

How to detect GWs ?:II

• If the experiment has a size I, the tidal **a** due to a passing GW $\mathbf{a}_{\mathrm{Tidal-GW}} \sim I c^2 h/\lambda^2 \sim h I \omega^2$, where ω being the angular frequency of the wave. The above qty is $\gg \phi_{\mathrm{N}} I/|\mathbf{x}|^2$

How to detect GWs ?: II

- If the experiment has a size I, the tidal **a** due to a passing GW $\mathbf{a}_{\mathrm{Tidal-GW}} \sim I c^2 h/\lambda^2 \sim h I \omega^2$, where ω being the angular frequency of the wave. The above qty is $\gg \phi_{\mathrm{N}} I/|\mathbf{x}|^2$
- Consider two particles in an empty space in the presence of a passing GW & let h = h₀ e^{iωt}. The Eq for the change in their separation δI

$$\ddot{\delta}I = \omega^2 I h_0 e^{i \,\omega \,t} \tag{20}$$

(日) (同) (三) (三)

- We have δI = δI₀ e^{iωt} such that |δI₀/I| = h₀
 Therefore, h is the relative strain induced in a system of free particles by the passing GW
- In GR, distances along the direction of propagation are NOT affected due to transverse nature of tensorial GWs

GWs from non-spherical collapse as in supernovae

• GW energy radiated
$$\Delta E \sim \mathcal{L}_{GW} T$$

 $\mathcal{L}_{GW} \sim \frac{c^5}{G} (r_{Sch}/R)^2 (V/c)^6 \sim \frac{c^5}{G} (r_{Sch}/R)^5$
 $T \sim \left(\frac{R^3}{GM}\right)^{1/2} \sim \frac{1}{c} \left(\frac{R^3}{r_{Sch}}\right)^{1/2}$

•
$$\Delta E \sim M c^2 (r_{\rm Sch}/R)^{7/2} = \nu M c^2$$

• GW amplitude becomes $h \sim (r_{\rm Sch}/r') ~(V^2/c^2) \sim \nu^{2/7} ~rac{r_{\rm Sch}}{r'}$

$$h \sim 10^{-18} \left(\frac{\nu}{0.1}\right)^{2/7} \left(\frac{M}{M_{\odot}}\right) \left(\frac{r'}{10 \,\mathrm{Kpc}}\right)^{-1}$$
 (21)

 $h\sim 10^{-21}$ for a supernova $\sim 20\,$ Mpc & this is really an upperbound GW frquencies are $\sim 100\to 10^3$ Hz

GWs from compact binaries :I

For binaries, $h \sim \frac{\phi_{\rm N}}{c^2} \frac{\phi_{\rm int}}{c^2}$ is fairly realistic estimate

• PSR 1913 + 16 The system contains a Pulsar being orbited by an unseen Neutron Star & having $M \sim 2.8 M_{\odot}$, $a/c \sim 2s (P_{\rm orb} \sim 7 \,{\rm hr})$ & $r' \sim 5 {\rm Kpc}$.

 $h\sim 10^{-23}$, $f_{GW}\sim 100\,\mu\,{
m Hz}$ & $L_{GW}\sim 10^{24}J/s$

The estimated change in $P_{\rm orb}$ matches quite well with Radio observation of the Pulsar. However, it will be impossible measure directly GWs from PSR 1913+16

GWs from compact binaries :I

For binaries, $h \sim \frac{\phi_{\rm N}}{c^2} \frac{\phi_{\rm int}}{c^2}$ is fairly realistic estimate

• PSR 1913 + 16 The system contains a Pulsar being orbited by an unseen Neutron Star & having $M \sim 2.8 M_{\odot}$, $a/c \sim 2s (P_{\rm orb} \sim 7 \,{\rm hr})$ & $r' \sim 5 {\rm Kpc}$.

 $h\sim 10^{-23}$, $f_{GW}\sim 100\,\mu\,{\rm Hz}$ & $L_{GW}\sim 10^{24}J/s$

The estimated change in $P_{\rm orb}$ matches quite well with Radio observation of the Pulsar. However, it will be impossible measure directly GWs from PSR 1913+16

- Compact binaries with $R \sim 100$ km are of great interest to LIGO/VIRGO
- Define $\tau_{\rm GW}$ as the time it takes a binary to radiate half of its potential energy

$$\tau_{\rm GW} = \frac{G \, M^2}{2 \, R \, \mathcal{L}_{\rm GW}}$$

イロト イポト イヨト イヨト 二日

GWs from compact binaries :II

Rough estimates for the amplitude, frequency & duration of inspiralling compact binaries are

$$h \approx 10^{-21} \left(\frac{15 \,\mathrm{Mpc}}{r}\right) \left(\frac{M}{2.8 \,M_{\odot}}\right)^{2} \left(\frac{90 \,\mathrm{km}}{R}\right), \quad (22)$$

$$f_{\mathrm{GW}} = \left(\frac{M}{2.8 \,M_{\odot}}\right)^{1/2} \left(\frac{90 \,\mathrm{km}}{R}\right)^{3/2} 100 \,\mathrm{Hz}, \quad (23)$$

$$\tau_{\mathrm{GW}} = \left(\frac{2.8 \,M_{\odot}}{M}\right)^{3} \left(\frac{R}{90 \,\mathrm{km}}\right)^{4} 0.5 \,\mathrm{s}, \quad (24)$$

The radiating system become more compact, its amplitude & frequency increase From measuring h, $f_{\rm GW}$ & $\tau_{\rm GW}$, one can estimate r, M, R & other quantities like i: the orbital inclination

13/12/2010 15 / 20

< ロ > < 同 > < 回 > < 回 > < 回 >

On Radiation Reaction effects: I

- Consider a classical electron (e⁻) orbiting a classical proton & emiting EM radiation. The system loses energy at a rate given by the Larmor formula & the orbits shrinks !
- This description is **incomplete** ! If the *e*⁻ only feels the Coulomb field of the proton, its motion must remain **circular** & its inspiraling motion can not take place
- Therefore, we are forced to conclude that the *e*⁻ is subjected to *its own electric field* !

On Radiation Reaction effects: I

- Consider a classical electron (e⁻) orbiting a classical proton & emiting EM radiation. The system loses energy at a rate given by the Larmor formula & the orbits shrinks !
- This description is **incomplete** ! If the *e*⁻ only feels the Coulomb field of the proton, its motion must remain **circular** & its inspiraling motion can not take place
- Therefore, we are forced to conclude that the *e*⁻ is subjected to *its own electric field* !
- The e⁻'s own field should diverge at its position. Therefore, how can it produce a *finite Radiation Reaction force that drives the inspiral* The finite part of the electron's self field provides the force that drives the inspiral of e⁻.
- It is fairly complicated to compute $\phi_{\rm RR}$ in GR such that ${\bf F}^{\rm Re}=-M\,{\bf \Delta}\phi^{\rm Re}$

(4回) (4回) (4回)

On Radiation Reaction effects: II

• Recall our 'retarded gravitational potential'

$$\phi_{\rm R}(\mathbf{x},t) = G \int \frac{\rho(\mathbf{y},t-\frac{r}{c})}{r} d^3 y$$
(25)

Taylor expand $ho(t-rac{r}{c})$ around ho(t) (near-zone expansion)

$$\phi_{\rm R} = -G \, \int r^{-1} \, \sum_{n=0}^{\infty} \left(-\frac{r}{c} \right)^n \, \frac{1}{n!} \frac{d^n}{dt^n} \, \rho(\mathbf{y}, t) \, d^3 y \tag{26}$$

• We will need to go to the 6th term to get an estimate for ϕ^{Re} Terms with n = 0, 2, 4 provides non-vanishing contributions to ϕ_{R} & they provide contributions to the conservative dynamics: the so-called Newtonian, 1PN & 2PN corrections to the dynamics Terms associated with n = 1, 3 should vanish

•
$$n = 5$$
 term is $\frac{G}{120 c^5} \int r^4 \rho^{(5)} d^3 y$

On Radiation Reaction effects: III

$$\phi^{\mathsf{Re}}(\mathbf{x},t) = \frac{G}{30 c^5} \left\{ {}^{(5)}I_{ij} x_i x_j + \frac{1}{2} |\mathbf{x}|^2 {}^{(5)}I_{kk} - x_i T_i \right\}$$
(27)

where $T_i = \int \rho y_i |\mathbf{y}|^2 d^3 y$

- These terms arise from r⁴ = (|x|² 2x · y + |y|²)² Terms that matter are 4 (x · y)², 2 |x|² |y|², -4 (x · y) |y|² as the rest may be ignored !
- ϕ^{Re} is the only term that can do any work on the system

$$\frac{dE}{dt} = -\int \rho \, v_i \, \nabla_i \, \phi_{\rm R} \, d^3 x = -\int \dot{\rho} \, \phi_{\rm R} \, d^3 x \tag{28}$$

Contributions $\phi^{\rm N},\phi^{\rm 1PN},\phi^{\rm 2PN}$ provide only total time derivatives to $\frac{dE}{dt}$ & hence $\to 0$ on orbital averaging !

13/12/2010 18 / 20

On Radiation Reaction effects: IV

$$-\left\langle \int \dot{\rho} \, \phi^{\mathsf{R}e} \, d^3x \right\rangle = -\frac{G}{30 \, c^5} \left\langle \dot{I}_{ij} \, {}^{(5)}I_{ij} + \frac{1}{2} \, {}^{(3)}I_{kk} \, {}^{(3)}I_{kk} \right\rangle \tag{29}$$

 In GR, under post-Newtonian approximation, final results are more compact

$$\left\langle \frac{dE}{dt} \right\rangle = -\frac{G}{5 c^5} \left\langle {}^{(3)} \mathcal{I}_{ij} {}^{(3)} \mathcal{I}_{ij} \right\rangle$$
(30)
$$\phi^{\text{Re}} = \frac{G}{5 c^5} {}^{(5)} \mathcal{I}_{ij} x_i x_j$$
(31)

13/12/2010 19 / 20

• Gravitational waves on the back of an envelope, **B. F. Schutz** American Journal of Physics, Volume 52, (5) pp. 412-419 (1984).

 Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects , S. L. Shapiro & S. A. Teukolsky