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Outline

Aim is to provide an introduction to Gravitational Waves (GWs) without
using General Relativity

What are GWs ?

Rough estimates for GW amplitude & luminosity associated with two
promising sources

How does the emission of GWs affect its source ?
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GWs: I
General Relativity (GR) defines GWs as ripples in the curvature of
space-time that propagate with the speed of light !

It is possible to COMPUTE most of the crucial effects of GWs using
Newtonian Gravitational Theory, Classical Electrodynamics & some
elements of Special Relativity
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GWs: I
General Relativity (GR) defines GWs as ripples in the curvature of
space-time that propagate with the speed of light !

It is possible to COMPUTE most of the crucial effects of GWs using
Newtonian Gravitational Theory, Classical Electrodynamics & some
elements of Special Relativity

Newtonian gravity involves a scalar potential φN(x, t) such that
∇φN = 4π G ρ, such that

φN(x, t) = −G

∫

ρ(y, t)

r
d3y , r ≡ |x− y| (1)

A change in φN(x, t) due to a change in ρ(y, t) propagate
instantaneously

Special Relativity demands that no information should be able to
propagate faster than c : the speed of light
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GWs: II

To make φN consistent with Special Relativity, we modify it

φR(x, t) = −G

∫

ρ(y, t − r
c
)

r
d3y (2)

Dominant effects of GWs can be deducted from such a retarded
gravitational potential

This simple insertion will help us to define GWs in a non-rigorous way
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To make φN consistent with Special Relativity, we modify it

φR(x, t) = −G

∫

ρ(y, t − r
c
)

r
d3y (2)

Dominant effects of GWs can be deducted from such a retarded
gravitational potential

This simple insertion will help us to define GWs in a non-rigorous way

φR satifies the scalar wave equation

�φR ≡
(

∇2 − ∂2

c2 ∂2t

)

φR = 4π G ρ

Take the spatial gradient of φR

∇φR = G

∫
(

ρ

r
−

∂ρ

c ∂t

)

x− y

r2
d3y (3)
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GWs: III

If |x| ≫ |ymx|, we have r ∼ |x| & can negelct 1/r term in the previous
Eq.

n ·∇φR ∼
∂φR

c ∂t
, n = x/|x| (4)

φR/λ ∼ 1/c × φR/T

If we are far away from a GW source, the typical length scale over
which φR varies is c × the typical time scale over which φR changes
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GWs: III

If |x| ≫ |ymx|, we have r ∼ |x| & can negelct 1/r term in the previous
Eq.

n ·∇φR ∼
∂φR

c ∂t
, n = x/|x| (4)

φR/λ ∼ 1/c × φR/T

If we are far away from a GW source, the typical length scale over
which φR varies is c × the typical time scale over which φR changes

This is true for a wave traveling at speed c

This is our Gravitational Wave

Recall that φR ∼ v2. Therefore, the amplitude of GW should be ∼

h ∼

(

time − dependent part of φR

)

c2
(5)
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An estimate for the dominate contribution to h: I

Consider a region |x| ≫ |y|b & we have far-zone expansion

1/r ≡ |x− y|−1 ∼
1

|x|
+ y · n |x|−2 (6)

This leads to (if we neglect O(|x|−2) terms )

φR = −
G

|x|

∫

ρ(y, tr ) d
3y , tr = t −

r

c
(7)

Let t0 = t − |x|
c

& this leads to tr ∼ t0 − y · n/c

Expand ρ(tr ) about t0

φR =
−G

|x|

{
∫
[

ρ(t0)−
ρ̇

c
n · y +

ρ̈

2 c2
(n · y)2 + ...

]

d3y

}

(8)
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An estimate for the dominate contribution to h: II

First term
∫

ρ(t0)d
3y ≡ M (9)

Let v = dy
dt
; the second term involves

ni

∫

ρ̇yi d
3y = ni

∫

ρ vi d
3y = n · P (10)

where P is the conserved momentum of the source
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An estimate for the dominate contribution to h: II

First term
∫

ρ(t0)d
3y ≡ M (9)

Let v = dy
dt
; the second term involves

ni

∫

ρ̇yi d
3y = ni

∫

ρ vi d
3y = n · P (10)

where P is the conserved momentum of the source

Third term contains
∫

ρ̈ yi yj d
3 y = Ïij (11)

where Iij(t) ≡
∫

ρ(t) yi yi d
3y is the quadrupole moment of

gravitating source & Ïij =
∫

ρ vi vj d
3y

Retarded potential becomes

φR ∼ −
G M

|x|
+

G n · P

c |x|
−

G

2 c2
Ïij ni nj

|x|
, (12)
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An estimate for the dominate contribution to h: III

This leads to

h ∼
G

2 c4
Ïij ni nj

|x|
(13)

Note that h depends only on the components of Iij along n, the
direction of propagation of the wave & this is due to the fact that we
are dealing with scalar waves
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An estimate for the dominate contribution to h: III

This leads to

h ∼
G

2 c4
Ïij ni nj

|x|
(13)

Note that h depends only on the components of Iij along n, the
direction of propagation of the wave & this is due to the fact that we
are dealing with scalar waves

In GR, GWs are ripples in the curvature of space-time & space-time
& its disturbances are described by tensors

Iij → transverse components of trace-free tensor Iij = Iij −
δij
3 Ikk

In GR, we have

hTTij =
2G

c4 r
Ïij(t − r/c) (14)

This implies that spherically symmetric motion WILL NOT produce
GWs. Any spherically symmetric tensor ∝ δij & hence Iij vanishes

Achamveedu Gopakumar (TIFR) Primer to GWs 13/12/2010 8 / 20



An estimate for GW luminosity :I

In classical ED, the dominant order multipole radiation fron a charge
distribution is the dipole radiation. The vector potential Ai in the
wave-zone

Aj =
1

c r
ḋj(tr ) (15)

The 1/r EM fields E & B depend only on the components of ḋ
transverse to n; dT

j ≡ Pjk dk , Pjk = δjk − nj nk

The Larmor formula provides the expression for EM luminosity

LEM =
2

3 c3
d̈j d̈j , dj = e yi (16)

For gravitating systems, linear & angular momenta provide electric &
magnetic type dipole moments & they are conserved
µ = 1

c

∑

a y
a × da = 1

c

∑

a y
a ×mav

a = 1
c

∑

a L
a
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An estimate for GW luminosity :II

LGW ∝
(3)
Iij

(3)
Iij

& dimensional consideration require us to have G/c5

Explicit calculations in GR provides

LGW =
G

5 c5
I
(3)
ij I

(3)
ij (17)
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An estimate for GW luminosity :II

LGW ∝
(3)
Iij

(3)
Iij

& dimensional consideration require us to have G/c5

Explicit calculations in GR provides

LGW =
G

5 c5
I
(3)
ij I

(3)
ij (17)

(3)Iij ∼ M R2/T 3 ∼ M V 3/R

LGW ∼
G

c5
(M/R)2 V 6 ∼ L0 (rSch/R)

2 (V /c)6 , (18)

where L0 =
c5

G
∼ 3.6× 1052J/s & rSch = G M/c2

LGW is maximal if R ∼ rSch & V ∼ c

Compact objects, having time-dependent quadrupole moment,
moving with velocities ∼ c are copious sources of GWs

Achamveedu Gopakumar (TIFR) Primer to GWs 13/12/2010 10 / 20



How to detect GWs ?:I

Recall that h ∼ G
2 c4

Ïij ni nj
|x| & Ïij ∼

∫

ρ vi vjd
3y ∼ M φint

φint provides typical value for Newtonian potential inside the source

h ∼
G M

c2 r ′
φint

c2
∼

φN

c2
φint

c2
∼

rSch

r ′
v2

c2
(19)

h ≪ φN

c2
and it is not possible to detect even a nearby star by

measuring its φN!

Recall that the acceleration a due to φN is ∼ φN/|x|
However, a due to passing GW of amplitude h and wavelength λ is
∼ c2 h/λ
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|x| & Ïij ∼

∫

ρ vi vjd
3y ∼ M φint

φint provides typical value for Newtonian potential inside the source

h ∼
G M

c2 r ′
φint

c2
∼

φN

c2
φint

c2
∼

rSch

r ′
v2

c2
(19)

h ≪ φN

c2
and it is not possible to detect even a nearby star by

measuring its φN!

Recall that the acceleration a due to φN is ∼ φN/|x|
However, a due to passing GW of amplitude h and wavelength λ is
∼ c2 h/λ

Entire Earth feels the above a & not possible to measure ( Einstein’s
equivalence principle )

However, it is possible to measure difference in the above a across an
experiment ( Tidal force ∼ M/L3)
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How to detect GWs ?:II

If the experiment has a size l , the tidal a due to a passing GW
aTidal−GW ∼ l c2 h/λ2 ∼ h l ω2, where ω being the angular frequency
of the wave. The above qty is ≫ φN l/|x|2
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How to detect GWs ?:II

If the experiment has a size l , the tidal a due to a passing GW
aTidal−GW ∼ l c2 h/λ2 ∼ h l ω2, where ω being the angular frequency
of the wave. The above qty is ≫ φN l/|x|2

Consider two particles in an empty space in the presence of a passing
GW & let h = h0 e

i ω t . The Eq for the change in their separation δl

δ̈l = ω2 l h0 e
i ω t (20)

We have δl = δl0 e
i ω t such that |δl0/l | = h0

Therefore, h is the relative strain induced in a system of free
particles by the passing GW

In GR, distances along the direction of propagation are NOT affected
due to transverse nature of tensorial GWs
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GWs from non-spherical collapse as in supernovae

GW energy radiated ∆E ∼ LGW T

LGW ∼ c5

G
(rSch/R)

2 (V /c)6 ∼ c5

G
(rSch/R)

5

T ∼
(

R3

G M

)1/2
∼ 1

c

(

R3

rSch

)1/2

∆E ∼ M c2 (rSch/R)
7/2 = νM c2

GW amplitude becomes h ∼ (rSch/r
′)
(

V 2/c2
)

∼ ν2/7 rSch
r ′

h ∼ 10−18
( ν

0.1

)2/7
(

M

M⊙

) (

r ′

10Kpc

)−1

(21)

h ∼ 10−21 for a supernova ∼ 20 Mpc & this is really an upperbound
GW frquencies are ∼ 100 → 103 Hz
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GWs from compact binaries :I
For binaries, h ∼ φN

c2
φint

c2
is fairly realistic estimate

PSR 1913 + 16 The system contains a Pulsar being orbited by an
unseen Neutron Star & having M ∼ 2.8M⊙, a/c ∼ 2s (Porb ∼ 7 hr)
& r ′ ∼ 5Kpc.

h ∼ 10−23 ,fGW ∼ 100µHz & LGW ∼ 1024J/s

The estimated change in Porb matches quite well with Radio
observation of the Pulsar. However, it will be impossible measure
directly GWs from PSR 1913+16
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GWs from compact binaries :I
For binaries, h ∼ φN

c2
φint

c2
is fairly realistic estimate

PSR 1913 + 16 The system contains a Pulsar being orbited by an
unseen Neutron Star & having M ∼ 2.8M⊙, a/c ∼ 2s (Porb ∼ 7 hr)
& r ′ ∼ 5Kpc.

h ∼ 10−23 ,fGW ∼ 100µHz & LGW ∼ 1024J/s

The estimated change in Porb matches quite well with Radio
observation of the Pulsar. However, it will be impossible measure
directly GWs from PSR 1913+16

Compact binaries with R ∼ 100 km are of great interest to
LIGO/VIRGO
Define τGW as the time it takes a binary to radiate half of its
potential energy

τGW =
G M2

2R LGW
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GWs from compact binaries :II

Rough estimates for the amplitude, frequency & duration of inspiralling
compact binaries are

h ≈ 10−21

(

15Mpc

r

)(

M

2.8M⊙

)2(90 km

R

)

, (22)

fGW =

(

M

2.8M⊙

)1/2(90 km

R

)3/2

100Hz , (23)

τGW =

(

2.8M⊙

M

)3(
R

90 km

)4

0.5 s , (24)

The radiating system become more compact, its amplitude &
frequency increase
From measuring h, fGW & τGW , one can estimate r ,M,R & other
quantities like i : the orbital inclination
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On Radiation Reaction effects: I

Consider a classical electron (e−) orbiting a classical proton &
emiting EM radiation. The system loses energy at a rate given by the
Larmor formula & the orbits shrinks !

This description is incomplete ! If the e− only feels the Coulomb
field of the proton, its motion must remain circular & its inspiraling
motion can not take place

Therefore, we are forced to conclude that the e− is subjected to its

own electric field !

Achamveedu Gopakumar (TIFR) Primer to GWs 13/12/2010 16 / 20



On Radiation Reaction effects: I

Consider a classical electron (e−) orbiting a classical proton &
emiting EM radiation. The system loses energy at a rate given by the
Larmor formula & the orbits shrinks !

This description is incomplete ! If the e− only feels the Coulomb
field of the proton, its motion must remain circular & its inspiraling
motion can not take place

Therefore, we are forced to conclude that the e− is subjected to its

own electric field !

The e−’s own field should diverge at its position. Therefore, how can
it produce a finite Radiation Reaction force that drives the inspiral

The finite part of the electron’s self field provides the force that drives
the inspiral of e−.

It is fairly complicated to compute φRR in GR such that
FRe = −M∆φRe
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On Radiation Reaction effects: II

Recall our ‘retarded gravitational potential‘

φR(x, t) = G

∫

ρ(y, t − r
c
)

r
d3y (25)

Taylor expand ρ(t − r
c
) around ρ(t) ( near-zone expansion )

φR = −G

∫

r−1
∞
∑

n=0

(

−
r

c

)n 1

n!

dn

dtn
ρ(y, t) d3y (26)

We will need to go to the 6th term to get an estimate for φRe

Terms with n = 0, 2, 4 provides non-vanishing contributions to φR &
they provide contributions to the conservative dynamics: the so-called
Newtonian, 1PN & 2PN corrections to the dynamics
Terms associated with n = 1, 3 should vanish

n = 5 term is G
120 c5

∫

r4 ρ(5) d3y
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On Radiation Reaction effects: III

φRe(x, t) =
G

30 c5

{(5)

Iij xi xj +
1

2
|x|2 (5)Ikk − xi Ti

}

(27)

where Ti =
∫

ρ yi |y|
2 d3y

These terms arise from r4 =
(

|x|2 − 2 x · y + |y|2
)2

Terms that matter are 4 (x · y)2, 2 |x|2 |y|2,−4 (x · y) |y|2 as the rest
may be ignored !

φRe is the only term that can do any work on the system

dE

dt
= −

∫

ρ vi ∇i φR d3x = −

∫

ρ̇ φR d3x (28)

Contributions φN, φ1PN, φ2PN provide only total time derivatives to
dE
dt

& hence → 0 on orbital averaging !
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On Radiation Reaction effects: IV

−

〈
∫

ρ̇ φRe d3x

〉

= −
G

30 c5

〈

İij
(5)Iij +

1

2
(3)Ikk

(3)Ikk

〉

(29)

In GR, under post-Newtonian approximation, final results are more
compact

〈

dE

dt

〉

= −
G

5 c5

〈(3)

Iij
(3)Iij

〉

(30)

φRe =
G

5 c5
(5)Iij xi xj (31)
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