Advantage of an **Extended Network of Detectors**

In Radiometric Searches for GW

Sanjit Mitra, JPL/LIGO, Caltech

GWB Detection Strategy

• Detector output = true signal + noise

$$s_1(t) = h_1(t) + n_1(t)$$

 $s_2(t) = h_2(t) + n_2(t)$

- Normally detector noise are uncorrelated: $\langle n_1(t)n_2(t')\rangle = 0$
- SGWB signal is characterized by correlation
- Cross-correlation (CC) statistic is the best choice

$$\langle s_1(t) \, s_2(t') \rangle$$

- one detector's signal is the filter for other detector's data

Cross Spectral Density (CSD)

• Observed data := Cross Spectral Density := product of SFT's

$$\mathbf{C}^{I} \equiv C_{ft}^{I} := \widetilde{s}_{I_{1}}^{*}(t;f) \widetilde{s}_{I_{2}}(t;f)$$

• Noise (in the small signal limit):

$$\mathbf{n}^{I} \equiv n_{ft}^{I} := \widetilde{n}_{I_{1}}^{*}(t;f) \widetilde{n}_{I_{2}}(t;f)$$

• Covariance matrix:

$$\mathbf{N} \equiv \operatorname{Cov}(C_{ft}^{I}, C_{f't'}^{I'}) \approx \frac{(\Delta T)^2}{4} \,\delta_{II'} \,\delta_{tt'} \,\delta_{ff'} \,P_{I_1}(t; f) \,P_{I_2}(t; f)$$

CSD Generated by an Anisotropic Background

• Anisotropic SGWB in some basis:

$$\mathcal{P}(\hat{\mathbf{\Omega}}) := \sum_{\alpha} \mathcal{P}_{\alpha} e_{\alpha}(\hat{\mathbf{\Omega}}); \quad \mathcal{P} \equiv \mathcal{P}_{\alpha}$$

• Observed CSD = convolution of anisotropic background with additive noise

$$C_{ft}^{I} := \sum_{\alpha} K_{ft,\alpha}^{I} \mathcal{P}_{\alpha} + n_{ft}^{I}$$

Low signal limit

- the "kernel" or "beam":

$$\mathbf{K}^{I} \equiv K^{I}_{ft,\alpha} := \Delta T H(f) \gamma^{I}_{\alpha}(f,t)$$

* generalized overlap reduction function

$$\gamma^{I}_{\alpha}(f,t) := \sum_{A=+,\times} \int_{S^{2}} \mathrm{d}\hat{\mathbf{\Omega}} \, F^{A}_{I_{1}}(\hat{\mathbf{\Omega}},t) \, F^{A}_{I_{2}}(\hat{\mathbf{\Omega}},t) \, e^{2\pi \mathrm{i} f \hat{\mathbf{\Omega}} \cdot \mathbf{\Delta} \mathbf{x}(t)/c} \, e_{\alpha}(\hat{\mathbf{\Omega}})$$

Contraction of the second

ML Estimation of SGWB Anisotropy

• ML estimates in any basis with a network of detectors:

$$\hat{\mathcal{P}}_{\alpha} \equiv \hat{\mathcal{P}} = \Sigma \cdot \mathbf{X}$$

- "Dirty" map (essentially filtered output):

$$\mathbf{X} := \mathbf{K}^{\dagger} \cdot \mathbf{N}^{-1} \cdot \mathbf{C} \Rightarrow X_{\alpha} = \frac{4}{\Delta T} \sum_{I,ft} \frac{H(f) \gamma_{ft,\alpha}^{I*}}{P_{I_1}(t;f) P_{I_2}(t;f)} \,\widetilde{s}_{I_1}^*(t;f) \,\widetilde{s}_{I_2}(t;f)$$

- Fisher information matrix:

$$\boldsymbol{\Sigma}^{-1} := \mathbf{K}^{\dagger} \cdot \mathbf{N}^{-1} \cdot \mathbf{K} \Rightarrow \left[\boldsymbol{\Sigma}^{-1} \right]_{\alpha \alpha'} = 4 \sum_{I, ft} \frac{H^2(f)}{P_{I_1}(t; f) P_{I_2}(t; f)} \gamma_{\alpha}^{I*}(f, t) \gamma_{\alpha'}^{I}(f, t) \right]$$

Specific Cases

- Optimal search
 - model of the sky as one component basis:

$$e_{\alpha}(\hat{\mathbf{\Omega}}) := \mathcal{P}_{A}(\hat{\mathbf{\Omega}})$$

- most general overlap reduction function:

$$\gamma_{\mathcal{P}_{\pm}}(t,f) := \int_{S^2} \mathrm{d}\hat{\mathbf{\Omega}}_0 \, e^{2\pi \mathrm{i}f\hat{\mathbf{\Omega}}_0 \cdot \mathbf{\Delta}\mathbf{x}(t)/c} \sum_{A=\pm} F_1^A(\hat{\mathbf{\Omega}}_0,t) \, F_2^A(\hat{\mathbf{\Omega}}_0,t) \, \mathcal{P}_A(\hat{\mathbf{\Omega}}_0)$$

- all sky search for anisotropic background

* requires a good model of the angular power distribution

Isotropic Search

$$e_{\alpha}(\mathbf{\hat{\Omega}}) := 1$$

- Time-independent overlap reduction function:
 - $\gamma_{\rm iso}(f) = \int_{S^2} \mathrm{d}\hat{\boldsymbol{\Omega}} \left[F_1^+(\hat{\boldsymbol{\Omega}}, t) F_2^+(\hat{\boldsymbol{\Omega}}, t) + F_1^{\times}(\hat{\boldsymbol{\Omega}}, t) F_2^{\times}(\hat{\boldsymbol{\Omega}}, t) \right] e^{2\pi \mathrm{i} f \hat{\boldsymbol{\Omega}} \cdot \boldsymbol{\Delta} \mathbf{x}(t)/c}$

- Low bandwidth (excludes detector sweet spot)

Band	H-L	H-L-G	H-L-V	H-L-V-G	
$200-300\mathrm{Hz}$	5.79	5.43	3.44	3.04	
$300-400\mathrm{Hz}$	18.57	15.37	7.92	5.88	

Smallest detectable band-limited background using each of the detector networks Strain power spectrum, in units of 10⁻⁴⁸ Hz⁻¹, that could be detected with 5% false alarm and 5% false dismissal rates, using one year of coincident data at design sensitivity.

Cella et al. (2007)

Network Performance for Anisotropic Searches

- Effective sensitivity
- Sky coverage
 - noise variance across the sky
 - better scanning
- Parameter accuracy
 - source localization
- Map making Deconvolution, NMSE and MLR

Directed Search

$$e_{\alpha}(\hat{\mathbf{\Omega}}) := \delta(\hat{\mathbf{\Omega}} - \hat{\mathbf{\Omega}}_{\alpha})$$

• Direction dependent overlap reduction function:

• The dirty map:

$$X_{\hat{\boldsymbol{\Omega}}} \propto \sum_{t=0}^{T} \int_{-\infty}^{\infty} \mathrm{d}f \, \tilde{s}_{1}^{*}(t,f) \, \tilde{s}_{2}(t,f) \, \frac{H(f) \, \gamma_{\hat{\boldsymbol{\Omega}}}^{*}(t,f)}{P_{1}(t,|f|) \, P_{2}(t,|f|)}$$

- Essentially Earth Rotation Synthesis Imaging

Beam / Kernel / PSF

• Observed map is a convolution of Beam / Kernel / PSF and the true sky

$$\widetilde{q}_{\widehat{\mathbf{\Omega}}}(t,f) = \frac{H(f)\,\gamma_{\mathcal{P}_{\pm}}(t,f)}{P_1(t,|f|)\,P_2(t,|f|)}$$

$$(A,B) := \Delta T \sum_{i} \int_{-\infty}^{\infty} \mathrm{d}f P_1(t_i;|f|) P_2(t_i;|f|) \widetilde{A}^*(t_i;f) \widetilde{B}(t_i;f)$$

$$X_{\hat{\mathbf{\Omega}}} = \left(q_{\hat{\mathbf{\Omega}}}, \frac{\widetilde{s}_1^*(t, f) \, \widetilde{s}_2(t, f)}{P_1(t, |f|) \, P_2(t, |f|)} \right)$$

$$B(\hat{\boldsymbol{\Omega}}, \hat{\boldsymbol{\Omega}}') = (q_{\hat{\boldsymbol{\Omega}}}, q_{\hat{\boldsymbol{\Omega}}'}) / \|q_{\hat{\boldsymbol{\Omega}}}\|^2$$

Advantage of an extended network of detectors in radiometric searches for GW

- Stationary Phase Approximation provides a nice theoretical model

Example of Directed Radiometer Deconvolution

Toy Multi-declination Source

Jamia-Milia Islamia, Delhi, 09-Feb-11

Network Deconvolution Performance

Jamia-Milia Islamia, Delhi, 09-Feb-11

SANJIT MITRA

Singular Values of a Network "Fisher Matrix"

Spherical Harmonic (SpH) Basis

$$e_{lm}(\mathbf{\hat{\Omega}}) := Y_{lm}(\mathbf{\hat{\Omega}})$$

• Harmonic space overlap reduction function

$$\gamma_{lm}^{I}(f,t) := \sum_{A=+,\times} \int_{S^2} \mathrm{d}\hat{\mathbf{\Omega}} \, F_{I_1}^{A}(\hat{\mathbf{\Omega}},t) \, F_{I_2}^{A}(\hat{\mathbf{\Omega}},t) \, e^{2\pi \mathrm{i} f \hat{\mathbf{\Omega}} \cdot \mathbf{\Delta} \mathbf{x}(t)/c} \, Y_{lm}(\hat{\mathbf{\Omega}})$$

- analytically computed
- has the nice azimuthal symmetry: $\gamma_{lm}^{I}(f,t) = \gamma_{lm}^{I}(f,0) \exp \frac{t_{\text{sidereal}}}{1 \text{ sidereal day}}$
- Why Spherical Harmonic basis?
 - easy to impose natural physical cutoffs

e.g., I_{max} < 10 cut off can not be applied in the pixel basis. Though high res cutoffs, like I_{max} < 1000, are still possible in pixel basis

- easy to get the noise covariance matrix of the estimated map

Advantage of a Network

• higher sensitivity and more uniform sky coverage

Advantage of an extended network of detectors in radiometric searches for GW

Jamia-Milia Islamia, Delhi, 09-Feb-11

SANJIT MITRA

Singular Values of a Network SpH "Fisher Matrix"

Search using Max Likelihood Ratio (MLR) Statistic

Search using Max Likelihood Ratio (MLR) Statistic

Search using Max Likelihood Ratio (MLR) Statistic

Distribution of MLR statistic for 4000 MC realizations

MLR Statistic Search Network Performance

- MLR statistic obtained from dirty (λ) and clean (λ_c) maps
 - HLV network performance is ~15% better than HL baseline

Noise Only

Strong Injection

Baseline	λ	λ_c	Baseline	λ	λ_c
H1L1	0.0512	0.0433	H1L1	78.5555	78.3271
L1V1	-0.1549	-0.1542	L1V1	35.9004	35.8940
H1V1	0.1105	0.1120	H1V1	31.5717	31.5662
H1L1V1	0.0208	0.0149	H1L1V1	91.9594	91.7600

Source Localization Error with a Network

Network "Sensitivity"

Network Sky Coverage: Standard Deviation

Network Sky Coverage: Scanning

Finding Optimal Detector Orientation

Rotate detector and plot sky SNR map

Finding Optimal Detector Orientation

• Plot orientation vs sky averaged SNR

Conclusions

- A general maximum likelihood (ML) framework to search for SGWB using the radiometer algorithm is useful for studying the performance of a network
- We have used different figures of merits to compare the performances of the network with its individual baselines
- Some results have been derived for a detector in India/Australia, a more organized study is necessary to complete this exercise
- Radiometer analysis has important applications (e.g., SGWB, pulsar searches)
 - also useful to obtain quick results and may provide insights on where to push the analysis to extract more science from a network

Thank You!

Spherical Harmonic Basis Implementation

• But, SVD introduces bias

Right ascension [hours] Advantage of an extended network of detectors in radiometric searches for GW

Jamia-Milia Islamia, Delhi, 09-Feb-11

Spherical Harmonic Basis Implementation

Stochastic Gravitational Wave Background (SGWB)

- Unresolved astrophysical or cosmological sources
 - popcorn or continuous
- Carry information not accessible in electro-magnetic astronomy
 - astrophysical sources
 - * information on the anisotropic local universe
 - primordial cosmological background (CGWB)
 - * direct probe of **inflation**
- Why here? A quick & comprehensive way to test network sensitivity/coverage

Quantities to Measure

- Definition: $\langle \tilde{h}_A(f, \hat{\Omega}) \tilde{h}_{A'}(f', \hat{\Omega}') \rangle = \delta_{AA'} \, \delta(f f') \, \delta^2(\hat{\Omega}, \hat{\Omega}') \, \mathcal{P}_A(\hat{\Omega}) \, H(f); \quad A, A' = +, \times$
- SGWB spectrum:

$$\Omega_{\rm GW}(f) = \frac{1}{\rho_{\rm crit}} \frac{\mathrm{d}\rho_{\rm GW}(f)}{\mathrm{d}\ln f}$$

- energy density per unit frequency interval in the units of critical density of the universe that is needed to make it flat
- **Specific intensity** of Gravitational Waves (GW):
 - GW flux incident normally per unit solid angle

$$I_{\rm GW}(f, \hat{\boldsymbol{\Omega}}) = \frac{4\pi^2 c}{3H_0^2} f^2 H(f) \left[\mathcal{P}_+(\hat{\boldsymbol{\Omega}}) + \mathcal{P}_{\times}(\hat{\boldsymbol{\Omega}}) \right]$$

Theoretical Models

Jamia-Milia Islamia, Delhi, 09-Feb-11

SANJIT MITRA

SGWB Probes

Jamia-Milia Islamia, Delhi, 09-Feb-11

SANJIT MITRA

All-sky Upper Limits

- Constraint from LIGO: $\Omega_{\rm GW}(f) < 6.9 \times 10^{-6}$
 - best in the frequency range around 100Hz
- from WMAP 7 year (Larson et al): $\Omega_{\rm GW} h^2 \lesssim 6 \times 10^{-13}$
 - frequency 10⁻¹⁷ 10⁻¹⁶ Hz
- structure formation (Smith et al): $\Omega_{GW}(f) h^2 < 8.4 \times 10^{-6}$
 - frequency range $10^{-15} 10^{-10}$ Hz
- Prediction from slow roll inflation: $\Omega_{\rm GW}(f) \sim 10^{-16} 10^{-15}$

Directed Search Upper Limit

• Upper limit map from LIGO's 4th Science run

- limits derived from dirty map
- rigorous treatment requires deconvolution

Deconvolution of Directed GW Radiometer Map

- Deconvolution is a challenge for any map making exercise
- The beam function was computed for each pixel
 - we used HEALpix pixelization (from CMB)
- Direct invert, solve convolution equation
 - we used Conjugate Gradient (CG) method (from CMB)
- Pixels below a certain threshold were masked
 - we used few times RMS of noise only clean map as threshold

SANJIT MITRA

Example of Directed Radiometer Deconvolution

• Toy 4-Pixel source near Virgo

Jamia-Milia Islamia, Delhi, 09-Feb-11

SANJIT MITRA

Deconvolution in Spherical Harmonic Basis

- Noise Covariance matrix of the clean map
- Conjugate gradient method inverts an equation, not the kernel matrix
- Here we used SVD based regularization
 - ignore all the insensitive modes
 - or, set all of them to the cut-off value

$$\Gamma = USU^* \quad \Longrightarrow \Gamma^{-1} = US^{-1}U^*$$

 $\forall S_i \in \mathbf{S}, \ S_i^{-1} := \begin{cases} 1/S_i & \text{if } S_i > S_{\min} \\ 0 \text{ or } 1/S_{\min} & \text{otherwise} \end{cases}$

