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Outline
• Background

– Engineers Approach to GW
– Time reversal invariance

• Free mass approach
– Good approx for initial detectors, not valid for advanced 

detectors

• Free mass SQL vs resonant Mass SQL
• Advanced GW detectors
• Introduction to the new physics of optical springs and 

quantum measurement



  

Current Status of GW 
Detectors

• Sensitivity ~ 100 quanta
• Most sensitive* instruments ever 

created. 
– (*smallest amount of detected 

energy)

• Advanced detectors plan to reach  
~ hf where f ~100Hz.

• We are already in the quantum 
regime.
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History of GW

• Gravitational waves proved to exist by the 
“sticky beads” thought experiment.
– Bondi, Pirani, Feynman, Isaacson

• Gravitational waves in General Relativity 
deposit energy and hence must be real.



  

Weber’s Approach
• Time Reversal Invariance

– Symmetry between a detector and 
transmitter

– Detector efficiency measured by its 
relaxation time for GW emission 
(quadrupole formula)

– Resonant bar relaxation time ~1030 years
– Detector: measure the GW work done 

on massive resonator as a change in its 
acoustic state.

– Typical engineering approach

QuickTime  and aﾪ
 decompressor

are needed to see this picture.



  

Cryogenic Resonant Bars
• Huge improvement over Weber’s bars by using 

cryogenic techniques.
• 1975 shock: Braginsky:  sensitivity proposed was 

below the limit to measurement set by the 
uncertainty principle.

• Concept of the Quantum Limit and new ideas 
about quantum squeezing, quantum non-
demolition

• Beating the Standard Quantum Limit shown to be 
feasible

• Bar detectors failed to sufficiently approach the 
SQL.



  

Impedance Matching 
• Electrical engineers are familiar with 

impedance matching.
• Impedance: force/velocity, voltage/current
• Impedance mismatches (transitions in 

impedance) across boundaries or 
between systems reduce the energy 
coupling

• Examples:
– tuning forks : poor impedance matching (high 

quality factor).
– Electrical power transformers (high impedance 

transmission line)
– Acoustic horn

QuickTime  and aﾪ
 decompressor

are needed to see this picture.



  

Impedance of Free Space

• Impedance of free space to electromagnetic 
waves is a fundamental constant.

• Z0 = µ0c = 376.73031 Ohms

• Weber’s demonstration of the long GW 
relaxation time of a perfect bar shows that the 
impedance of free space to GW is extremely 
high.

• Easy to see that ZG~ c3/G ~ 1035 Ohms



  

Impedance matching for 
Electromagnetic Waves

• Optical anti-reflection coatings

• Radio antennas
– May be broadband or narrowband

QuickTime  and aﾪ
 decompressor

are needed to see this picture.



  

Impedance Mismatch

• In electronics high input impedance allows 
measurement of a weak signal with 
minimal extraction of energy.
– Voltage detected is independent of system 

details 

• Impedance mismatch between GW and 
GW detector means that the strain 
amplitude at the detector is independent of 
detector details



  

Impedance Picture For Bars

• Resonant Bars: double impedance 
matching problem: 

GW
bar transducer

ZG~c3/G Zbar ~Mvs/L Zt ~ Electrical 
energy density

• Search for suitable materials that optimised ρvs
3.Q



  

Differing Approaches
• Bars: concept of energy absorption cross section

• Interferometers: concept of measuring motion of free 
masses
– Good approximation in era of initial detectors
– Bad approximation for Advanced detectors

• Confusing in all cases because it implies no energy coupling
• In reality energy coupling is fundamental.
• Advanced interferometers exceed the energy coupling of 

bars.



  

Quantum Limits

• Bar

• Interferometer

– Normally expressed as free mass 
displacement sensing quantum limit
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Advanced Laser Interferometer

Laser

Photodetector

• Fabry Perot arm cavities
• Power recycling cavity
• Signal recycling cavity

End Test mass (ETM)

BS
PRM

Input Test mass (ITM)

SRM

• Fabry Perot arm cavities• Fabry Perot arm cavities
• Power recycling cavity
• Signal recycling cavity

4000m

800kW



  

Optical Spring

QuickTime  and aﾪ
 decompressor

are needed to see this picture.

Yanbei Chen



  

Estimate Spring Strength

• 1MW optical power

• Radiation pressure force =2P/c ~ 10mN

• Force acts over optical cavity linewidth ~ 
1nm

• Spring constant k=F/x

• K= 10-2/10-9 ~ 107N/m

• 103 tonnes/m

QuickTime  and aﾪ
 decompressor

are needed to see this picture.



  

Changing the Dynamics
• Optical springs change detector dynamics
• They strengthen the interaction with the GW signal 

– increased energy coupling 

• They change the detector response.
– Eg: reduced sensitivity at low frequency

• The quantum limit is no longer the Free Mass SQL
• The SQL formulae for bar and interferometer are 

unified, but interferometer has L=4km and vs > 
100km/s.



  

QuickTime  and aﾪ
 decompressor

are needed to see this picture.

Yanbei Chen



  

Quantum Measurement
• Free Mass SQL is a convenient benchmark
• High optical power enables better impedance 

matching between GW and  detector
• Thus sensitivity is directly increased as radiation 

density in the detector arms increases.
• Quantum measurement offers further 

improvements:
1. Optical squeezing changing the correlation 

between optical quadratures
2. Ponderomotive squeezing: radiation pressure 

induced correlations between ∆x and ∆p
3. Local readout: recovery of low frequency 

sensitivity lost by the dynamics of optical springs



  

Sub-quantum-limited interferometer

Quantum correlations
(Buonanno and Chen)

X+

X−

Input squeezing

Nergis Mavalvala
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Three-mode opto-acoustic 
parametric interactions 
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The conditions that enable strong optical springs also allow 
three mode interactions to occur.

These interactions are a threat to stability but offer both 
opportunities and challenges. 



  

Conclusion
• There is energy exchange between GW and all types of 

detectors

• It would be useful if this energy formalism were further 
developed for interferometers

• Optical springs provide a new tool for improving GW 
detectors by allowing a whole range of new approaches 
such as double optical springs. Chunnong Zhao will discuss 
Thursday.

• We are threatened by three mode interactions which could 
cause instability if not controlled.Ju Li will discuss Thursday.
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